0000000001262792
AUTHOR
Alfredo García-arieta
Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses
The present work aimed to explain the differences in oral performance in fasted humans who were categorized into groups based on the three different drug product formulations of dexketoprofen trometamol (DKT) salt&mdash
Erratum: Mangas-Sanjuán, V.; et al. Assessment of the Inter-Batch Variability of Microstructure Parameters in Topical Semisolids and Impact on the Demonstration of Equivalence. Pharmaceutics 2019, 11, 503
Demonstration of similar microstructure is essential for demonstrating the equivalence of generic topical products since the microstructure of semisolids may affect the drug release. The objective of this study was to compare the microstructure-defining physical parameters of different batches of a reference ointment containing calcipotriol and betamethasone (Daivobet 50 µg/0.5 mg/g) in order to define the acceptance range that allows concluding equivalence between these batches. Being batches of the same reference product, they are expected to be clinically equivalent and possess similar microstructure. The 90% confidence intervals for the test/reference ratio of these physical parameters …
Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making
Atorvastatin (ATS) is the gold-standard treatment worldwide for the management of hypercholesterolemia and prevention of cardiovascular diseases associated with dyslipidemia. Physiologically based pharmacokinetic (PBPK) models have been positioned as a valuable tool for the characterization of complex pharmacokinetic (PK) processes and its extrapolation in special sub-groups of the population, leading to regulatory recognition. Several PBPK models of ATS have been published in the recent years, addressing different aspects of the PK properties of ATS. Therefore, the aims of this review are (i) to summarize the physicochemical and pharmacokinetic characteristics involved in the time-course o…
Estimators and confidence intervals of f2 using bootstrap methodology for the comparison of dissolution profiles
Abstract Background and objectives: The most widely used method to compare dissolution profiles is the similarity factor f 2 . When this method is not applicable, the confidence interval of f 2 using bootstrap methodology has been recommended instead. As neither details of the estimator nor the types of confidence intervals are described in the guidelines, the suitability of five estimators and fourteen types of confidence intervals were investigated in this study by simulation. Methods: One million individual dissolution profiles were simulated for the reference and test populations with predefined target population f 2 values, where random samples of different sizes were drawn without rep…
Computer simulations for bioequivalence trials: Selection of analyte in BCS class II and IV drugs with first-pass metabolism, two metabolic pathways and intestinal efflux transporter.
A semi-physiological two compartment pharmacokinetic model with two active metabolites (primary (PM) and secondary metabolites (SM)) with saturable and non-saturable pre-systemic efflux transporter, intestinal and hepatic metabolism has been developed. The aim of this work is to explore in several scenarios which analyte (parent drug or any of the metabolites) is the most sensitive to changes in drug product performance (i.e. differences in in vivo dissolution) and to make recommendations based on the simulations outcome. A total of 128 scenarios (2 Biopharmaceutics Classification System (BCS) drug types, 2 levels of KM Pgp, in 4 metabolic scenarios at 2 dose levels in 4 quality levels of t…
Semi-physiologic model validation and bioequivalence trials simulation to select the best analyte for acetylsalicylic acid
Abstract The objective of this paper is to apply a previously developed semi-physiologic pharmacokinetic model implemented in NONMEM to simulate bioequivalence trials (BE) of acetyl salicylic acid (ASA) in order to validate the model performance against ASA human experimental data. ASA is a drug with first-pass hepatic and intestinal metabolism following Michaelis–Menten kinetics that leads to the formation of two main metabolites in two generations (first and second generation metabolites). The first aim was to adapt the semi-physiological model for ASA in NOMMEN using ASA pharmacokinetic parameters from literature, showing its sequential metabolism. The second aim was to validate this mod…
In silicoprediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen
The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient …
Assessment of the Inter-Batch Variability of Microstructure Parameters in Topical Semisolids and Impact on the Demonstration of Equivalence
Demonstration of similar microstructure is essential for demonstrating the equivalence of generic topical products since the microstructure of semisolids may affect the drug release. The objective of this study was to compare the microstructure-defining physical parameters of different batches of a reference ointment containing calcipotriol and betamethasone (Daivobet 50 µ
Influence of Inter- and Intra-Batch Variability on the Sample Size Required for Demonstration of Equivalent Microstructure of Semisolid Dosage Forms
Inter- and intra-batch variability of the quality attributes contribute to the uncertainty for demonstrating equivalent microstructure of post-approval changes and generic/hybrids of semisolid topical products. Selecting a representative sample size to describe accurately the in vitro properties of semisolids and to reach enough statistical power to demonstrate similarity between two semisolid topical products is currently challenging. The objective of this work is to establish the number of batches and units per batch to be compared based on different inter-batch and intra-batch variability to demonstrate equivalence in the physical characteristics of the products that ensure a similar mic…
Candesartan Cilexetil In Vitro-In Vivo Correlation: Predictive Dissolution as a Development Tool
[EN] The main objective of this investigation was to develop an in vitro-in vivo correlation (IVIVC) for immediate release candesartan cilexetil formulations by designing an in vitro dissolution test to be used as development tool. The IVIVC could be used to reduce failures in future bioequivalence studies. Data from two bioequivalence studies were scaled and combined to obtain the dataset for the IVIVC. Two-step and one-step approaches were used to develop the IVIVC. Experimental solubility and permeability data confirmed candesartan cilexetil. Biopharmaceutic Classification System (BCS) class II candesartan average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain th…
Defining level A IVIVC dissolution specifications based on individual in vitro dissolution profiles of a controlled release formulation.
Regulatory guidelines recommend that, when a level A IVIVC is established, dissolution specification should be established using averaged data and the maximum difference between AUC and Cmax between the reference and test formulations cannot be greater than 20%. However, averaging data assumes a loss of information and may reflect a bias in the results. The objective of the current work is to present a new approach to establish dissolution specifications using a new methodology (individual approach) instead of average data (classical approach). Different scenarios were established based on the relationship between in vitro-in vivo dissolution rate coefficient using a level A IVIVC of a cont…
Computer simulations for bioequivalence trials: selection of analyte in BCS drugs with first-pass metabolism and two metabolic pathways.
The objective of this work is to use a computer simulation approach to define the most sensitive analyte for in vivo bioequivalence studies of all types of Biopharmaceutics Classification System (BCS) drugs undergoing first-pass hepatic metabolism with two metabolic pathways. A semi-physiological model was developed in NONMEM VI to simulate bioequivalence trials. Four BCS classes (from Class I to IV) of drugs, with three possible saturation scenarios (non-saturation, saturation and saturation of only the major route of metabolism), two (high or low) dose schemes, and six types of pharmaceutical quality for the drug products were simulated. The number of investigated scenarios was 144 (4 × 3…
Validation of a semi-physiological model for caffeine in healthy subjects and cirrhotic patients.
The objective of this paper was to validate a previously developed semi physiological model to simulate bioequivalence trials of drug products. The aim of the model was to ascertain whether the measurement of the metabolite concentration-time profiles would provide any additional information in bioequivalence studies (Fernandez-Teruel et al., 2009a,b; Navarro-Fontestad et al., 2010). The semi-physiological model implemented in NONMEM VI was used to simulate caffeine and its main metabolite plasma levels using caffeine parameters from bibliography. Data from 3 bioequivalence studies in healthy subjects at 3 different doses (100, 175 and 400mg of caffeine) and one study in cirrhotic patients …
Computer simulations of bioequivalence trials: selection of design and analyte in BCS drugs with first-pass hepatic metabolism: linear kinetics (I).
Modeling and simulation approaches are useful tools to assess the potential outcome of different scenarios in bioequivalence studies. The aim of this study is to propose a new and improved semi-physiological model for bioequivalence trial simulations and apply it for all BCS (Biopharmaceutic Classification System) drug classes with non-saturated first-pass hepatic metabolism. The semi-physiological model was developed in NONMEM VI to simulate bioequivalence trials. Parent drug and metabolite levels for both reference and test were simulated. Eight types of drugs (with high or low permeability and high or low solubility (class I to IV) and high or low intrinsic clearance) were considered in …
Comparison of free software platforms for the calculation of the 90% confidence interval of f2 similarity factor by bootstrap analysis
Abstract Introduction The calculation of the 90% confidence interval of f2 based on the bootstrap methodology has been proposed and accepted by the main regulatory authorities when the dissolution data shows excessive variability. Different free software platforms allow the calculation of the 90% CI of f2 by means of bootstrapping. Their use in regulatory submissions is growing, but divergent results have been observed between the available software platforms. Therefore, the objective of this work is to analyze the characteristics of these software platforms and evaluate their results. Methods and materials Highly variable in vitro dissolution data from two products were selected. Three dif…