0000000001262793

AUTHOR

Carlos Fernández-teruel

Kinetic modelling of passive transport and active efflux of a fluoroquinolone across Caco-2 cells using a compartmental approach in NONMEM.

The purpose was to develop a general mathematical model for estimating passive permeability and efflux transport parameters from in vitro cell culture experiments. The procedure is applicable for linear and non-linear transport of drug with time,10 or10% of drug transport, negligible or relevant back flow, and would allow the adequate correction in the case of relevant mass balance problems. A compartmental kinetic approach was used and the transport barriers were described quantitatively in terms of apical and basolateral clearances. The method can be applied when sink conditions are not achieved and it allows the evaluation of the location of the transporter and its binding site. In this …

research product

Computer simulations for bioequivalence trials: selection of analyte in BCS drugs with first-pass metabolism and two metabolic pathways.

The objective of this work is to use a computer simulation approach to define the most sensitive analyte for in vivo bioequivalence studies of all types of Biopharmaceutics Classification System (BCS) drugs undergoing first-pass hepatic metabolism with two metabolic pathways. A semi-physiological model was developed in NONMEM VI to simulate bioequivalence trials. Four BCS classes (from Class I to IV) of drugs, with three possible saturation scenarios (non-saturation, saturation and saturation of only the major route of metabolism), two (high or low) dose schemes, and six types of pharmaceutical quality for the drug products were simulated. The number of investigated scenarios was 144 (4 × 3…

research product

A new mathematical approach for the estimation of the AUC and its variability under different experimental designs in preclinical studies

The aim of the present work was to develop a new mathematical method for estimating the area under the curve (AUC) and its variability that could be applied in different preclinical experimental designs and amenable to be implemented in standard calculation worksheets. In order to assess the usefulness of the new approach, different experimental scenarios were studied and the results were compared with those obtained with commonly used software: WinNonlin® and Phoenix WinNonlin®. The results do not show statistical differences among the AUC values obtained by both procedures, but the new method appears to be a better estimator of the AUC standard error, measured as the coverage of 95% confi…

research product

In situ kinetic modelling of intestinal efflux in rats: functional characterization of segmental differences and correlation with in vitro results.

The objective was to devise and apply a novel modelling approach to combine segmental in situ rat perfusion data and in vitro cell culture data, in order to elucidate the contribution of efflux in drug absorption kinetics. The fluoroquinolone CNV97100 was used as a model P-gp substrate. In situ intestinal perfusion was performed in rat duodenum, jejunum, ileum and colon to measure the influence of P-gp expression on efflux. Inhibition studies of CNV97100 were performed in the presence of verapamil, quinidine, cyclosporin A and p-aminohippuric acid. Absorption/efflux parameters were modelled simultaneously, using data from both in situ studies as well as in vitro studies. The maximal efflux …

research product

Mathematical modeling of oral absorption and bioavailability of a fluoroquinolone after its precipitation in the gastrointestinal tract

The objective was to characterize the in vivo absorption and bioavailability (BA) of a low solubility, high permeability fluoroquinolone (CNV97101) that precipitates in the gastrointestinal (GI) tract by mathematical modeling approach. In situ rat intestinal perfusion studies were performed to characterize the absorption mechanism. The oral fraction absorbed in vivo was lower than the predicted based on the in situ intestinal permeability. Two additional routes of administration, intraduodenal (ID) and intraperitoneal (IP) were investigated to explore if precipitation in stomach and subsequent partial re-dissolution were the causes of the lower in vivo BA. Ex vivo precipitation studies with…

research product

Computer simulations of bioequivalence trials: selection of design and analyte in BCS drugs with first-pass hepatic metabolism: linear kinetics (I).

Modeling and simulation approaches are useful tools to assess the potential outcome of different scenarios in bioequivalence studies. The aim of this study is to propose a new and improved semi-physiological model for bioequivalence trial simulations and apply it for all BCS (Biopharmaceutic Classification System) drug classes with non-saturated first-pass hepatic metabolism. The semi-physiological model was developed in NONMEM VI to simulate bioequivalence trials. Parent drug and metabolite levels for both reference and test were simulated. Eight types of drugs (with high or low permeability and high or low solubility (class I to IV) and high or low intrinsic clearance) were considered in …

research product

Kinetic modelling of the intestinal transport of sarafloxacin. Studiesin situin rat andin vitroin Caco-2 cells

The absorption kinetics of sarafloxacin, as a model of fluoroquinolone structure, were studied in the rat small intestine and in Caco-2 cells. The objective of the study was to investigate the mechanistic basis of the drug's intestinal transport in comparison with other members of the fluoroquinolone family and to apply a mathematical modelling approach to the transport process. In the rat small intestine, sarafloxacin showed dual mechanisms of intestinal absorption with a passive diffusional component and an absorptive carrier-mediated component. The characteristics of the animal study design made it suitable for population analysis, thus allowing the accurate estimation of transport param…

research product

Computer Simulations as a Tool for Optimizing Bioequivalence Trials

research product