0000000001263354

AUTHOR

L. Venuti

showing 7 related works from this author

CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and acc…

2017

Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264. In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are an…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesstars: pre-main sequenceAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicscircumstellar matter01 natural sciencesSettore FIS/05 - Astronomia E Astrofisicastars: rotation0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpectral analysis010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPhotosphere010308 nuclear & particles physicsX-rayAstronomy and AstrophysicsSpectral componentAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExtinction (optical mineralogy)stars: variables: T Tauri Herbig Ae/BeAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaMain sequence
researchProduct

CSI2264: Simultaneous optical and X-ray variability in the pre-main sequence stars of NGC2264. II: Photometric variability, magnetic activity, and ro…

2019

Pre-main sequence stars are variable sources. In diskless stars this variability is mainly due to the rotational modulation of dark photospheric spots and active regions, as in main sequence stars even if associated with a stronger magnetic activity. Aims. We aim at analyzing the simultaneous optical and X-ray variability in these stars to unveil how the activity in the photosphere is connected with that in the corona, to identify the dominant surface magnetic activity, and to correlate our results with stellar properties, such as rotation and mass. Methods. We analyzed the simultaneous optical and X-ray variability in stars without inner disks (e.g., class III objects and stars with transi…

PhysicsPhotosphere010504 meteorology & atmospheric sciencesStellar rotationAstrophysics::High Energy Astrophysical PhenomenaStarspotFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLight curve01 natural sciencesT Tauri starStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary Astrophysics010303 astronomy & astrophysicsMain sequenceAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

X-shooter spectroscopy of young stars with disks. The TW Hydrae association as a probe of the final stages of disk accretion

2019

We investigate ongoing accretion activity in young stars in the TW Hydrae association (TWA, ~8-10 Myr), an ideal target to probe the final stages of disk accretion down to brown dwarf masses. Our sample comprises eleven TWA members with infrared excess, amounting to 85% of the total TWA population with disks, with spectral types between M0 and M9, and masses between 0.58 and 0.02 Msol. We employed homogeneous spectroscopic data from 300 to 2500 nm, obtained with X-shooter, to derive individual extinction, stellar parameters, and accretion parameters simultaneously. We then examined Balmer lines and forbidden emission lines to probe the physics of the star-disk interaction environment. We de…

AccretionOpen clusters and associations: individual: TWA010504 meteorology & atmospheric sciencesBrown dwarfFOS: Physical sciencesTechniques: spectroscopicAstrophysicsProtoplanetary diskStellar classification01 natural sciencesspectroscopic [Techniques]symbols.namesakeSettore FIS/05 - Astronomia E Astrofisicalow-mass [Stars]pre-main sequence [Stars]0103 physical sciencesStars: low-maTW HydraeQB Astronomy010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesQBEarth and Planetary Astrophysics (astro-ph.EP)PhysicsInfrared excessBalmer seriesAstronomy and AstrophysicsDASAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)StarsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAccretion diskAstrophysics of Galaxies (astro-ph.GA)Accretion diskssymbolsStars: pre-main sequenceindividual: TWA [Open clusters and associations]Astrophysics - Earth and Planetary Astrophysics
researchProduct

CSI 2264: Simultaneous optical and X-ray variability in the pre-main sequence stars of NGC 2264

2019

Context. Pre-main sequence stars are variable sources. In diskless stars this variability is mainly due to the rotational modulation of dark photospheric spots and active regions, as in main sequence stars even if associated with a stronger magnetic activity.Aims. We aim at analyzing the simultaneous optical and X-ray variability in these stars to unveil how the activity in the photosphere is connected with that in the corona, to identify the dominant surface magnetic activity, and to correlate our results with stellar properties, such as rotation and mass.Methods. We analyzed the simultaneous optical and X-ray variability in stars without inner disks (e.g., class III objects and stars with…

stars: coronaestarspotsSettore FIS/05 - Astronomia E Astrofisicastars: rotationstars: activitystars: variables: T Tauri Herbig Ae/Bestars: pre-main sequence
researchProduct

Mapping accretion variability in NGC 2264

2014

Our study aims at characterizing the accretion properties of several hundred members of the star-forming region NGC 2264 (3Myr). We performed a deep u,g,r,i mapping of the cluster with CFHT/MegaCam, and monitored the simultaneous u+r variability of its members over a baseline of two weeks. Stellar parameters are determined homogeneously for about 750 monitored young objects, 40% of which are accreting T Tauri stars. Accretion properties and accretion variability are investigated and characterized from UV excess measurements. Non-accreting members of the cluster define the reference UV emission level over which flux excess is detected and measured. Cone search capability for table J/A+A/570/…

Open star clustersPhotometryobservational astronomyAccretionAstrophysics and AstronomyPhysicsCCD photometryAstrophysical ProcessesNatural SciencesSloan photometrystellar astronomyOptical astronomy
researchProduct

UV variability and accretion in NGC 2264

2015

Photometric variability is a distinctive feature of young stellar objects; exploring variability signatures at different wavelengths provides insight into the physical processes at work in these sources. We explore the variability signatures at ultraviolet (UV) and optical wavelengths for several hundred accreting and non-accreting members of the star-forming region NGC 2264 (~3Myr). Cone search capability for table J/A+A/581/A66/table2 (Median photometry, variability amplitudes, light curve rms, J index, and color slopes for members monitored at CFHT)

interstellar mediumAccretionUltraviolet astronomyAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyYoung stellar objectsOptical astronomyPhotometryobservational astronomyAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsCCD photometryAstrophysical ProcessesNatural SciencesSloan photometryAstrophysics::Galaxy Astrophysics
researchProduct

TW Hydrae association with X-shooter

2019

Measurements of the protoplanetary disk frequency in young star clusters of different ages indicate disk lifetimes <10Myr. However, our current knowledge of how mass accretion in young stars evolves over the lifespans of disks is subject to many uncertainties, especially at the lower stellar masses. In this study, we investigate ongoing accretion activity in the TW Hydrae association (TWA), the closest association of pre-main sequence stars with active disks. The age (8-10Myr) and the proximity of the TWA render it an ideal target to probe the final stages of disk accretion down to brown dwarf masses. The study is based on homogeneous spectroscopic data from 300nm to 2500nm, obtained synopt…

AccretionUltraviolet astronomyAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyobservational astronomyPre main sequence starsM starsInfrared astronomyAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsPre-main sequence starsAstrophysical ProcessesNatural SciencesAstrophysics::Galaxy AstrophysicsSpectroscopy
researchProduct