0000000001265465

AUTHOR

J. Kirkby

showing 2 related works from this author

Search for neutral MSSM Higgs bosons at LEP

2006

The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of "benchmark" models, including CP-conserving and CP-violating scenarios. Thes…

AlephPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; ALEPH; DELPHI; L3; OPALPhysics and Astronomy (miscellaneous)Parameter space01 natural sciencesOPAL DETECTORHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Event (probability theory)BosonPhysicsEXPLICIT CP VIOLATIONROOT-S=189 GEVOPALFLAVOR INDEPENDENT SEARCHParticle physics - ExperimentPhysicsSettore FIS/01 - Fisica SperimentaleHiggs particle. search forSUPERGAUGE TRANSFORMATIONSALEPHLARGE ELECTRON POSITRON COLLIDERALEPH DELPHI L3 OPALSUPERSYMMETRIC STANDARD MODELROOT-SL3Higgs bosonPARTICLE PHYSICSParticle physicselectron positron. colliding beamselectron positron. annihilationFOS: Physical sciencessupersymmetric standard model;; explicit cp violation;; electric-dipole moment;; e(+)e(-) collisions;; root-s=189 gev;; opal detector;; root-s;; z(0) decays;; supergauge transformations;; radiative-correctionsHiggs particle. electroproductionddc:500.2-SUPERSYMMETRIC STANDARD MODEL; EXPLICIT CP VIOLATION; FLAVOR INDEPENDENT SEARCH; ELECTRIC-DIPOLE MOMENT; E(+)E(-) COLLISIONS; ROOT-S; ROOT-S=189 GEV; OPAL DETECTOR; Z(0) DECAYS; SUPERGAUGE TRANSFORMATIONSHiggs particleLEP colliderNext-to-Minimal Supersymmetric Standard ModelELECTRIC-DIPOLE MOMENTE(+)E(-) COLLISIONSConsistency (statistics)0103 physical sciencesddc:530High Energy Physics010306 general physicsEngineering (miscellaneous)DELPHIelectron positron010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHiggs BosonLEPHIGGSHiggs boson standard modelZ(0) DECAYSExperimental High Energy PhysicsHigh Energy Physics::ExperimentHiggs Boson; LEP colliderMSSMMinimal Supersymmetric Standard ModelHiggs
researchProduct

The driving factors of new particle formation and growth in the polluted boundary layer

2021

Publisher Copyright: © 2021 Mao Xiao et al. New particle formation (NPF) is a significant source of atmospheric particles, affecting climate and air quality. Understanding the mechanisms involved in urban aerosols is important to develop effective mitigation strategies. However, NPF rates reported in the polluted boundary layer span more than 4 orders of magnitude, and the reasons behind this variability are the subject of intense scientific debate. Multiple atmospheric vapours have been postulated to participate in NPF, including sulfuric acid, ammonia, amines and organics, but their relative roles remain unclear. We investigated NPF in the CLOUD chamber using mixtures of anthropogenic vap…

Astrophysics and AstronomyAtmospheric Science010504 meteorology & atmospheric sciencesQC1-999010501 environmental sciences01 natural sciences114 Physical sciencesAmmoniachemistry.chemical_compoundmedicineQD1-999Air quality index0105 earth and related environmental sciencesDriving factorsPhysicsSulfuric acidmedicine.diseaseChemistryBoundary layerchemistry13. Climate actionEnvironmental chemistryParticleEnvironmental scienceVolatility (chemistry)Vapours
researchProduct