Almost disjoint families of countable sets and separable complementation properties
We study the separable complementation property (SCP) and its natural variations in Banach spaces of continuous functions over compacta $K_{\mathcal A}$ induced by almost disjoint families ${\mathcal A}$ of countable subsets of uncountable sets. For these spaces, we prove among others that $C(K_{\mathcal A})$ has the controlled variant of the separable complementation property if and only if $C(K_{\mathcal A})$ is Lindel\"of in the weak topology if and only if $K_{\mathcal A}$ is monolithic. We give an example of ${\mathcal A}$ for which $C(K_{\mathcal A})$ has the SCP, while $K_{\mathcal A}$ is not monolithic and an example of a space $C(K_{\mathcal A})$ with controlled and continuous SCP …