0000000001266850

AUTHOR

C Pagliarone

showing 3 related works from this author

Higgs boson studies at the Tevatron

2013

We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90-200 GeV/c2 produced in the gluon-gluon fusion, WH, ZH, tt̄H, and vector boson fusion processes, and decaying in the H→bb̄, H→W+W-, H→ZZ, H→τ+τ-, and H→γγ modes. The data correspond to integrated luminosities of up to 10 fb-1 and were collected at the Fermilab Tevatron in pp̄ collisions at √s=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2. The local significance corresponds to 3.0 standard deviations at mH=125 GeV/c2, consistent with the…

FERMILAB TEVATRON COLLIDERNuclear and High Energy PhysicsParticle physicsproton antiproton collisions; FERMILAB TEVATRON COLLIDER; Standard Model Higgs boson; BROKEN SYMMETRIESSTANDARD MODELP(P)OVER-BAR COLLISIONSTevatronFOS: Physical sciencesContext (language use)ATLAS DETECTORddc:500.2Standard Model Higgs boson7. Clean energy01 natural sciencesStandard ModelVector bosonHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)SEARCH0103 physical sciencesBibliography[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BROKEN SYMMETRIESFermilab010306 general physicsPhysicsHIGGS BOSONB-JET IDENTIFICATIONLarge Hadron ColliderPP COLLISIONS010308 nuclear & particles physics4. EducationHigh Energy Physics::PhenomenologyROOT-S=1.96 TEVPARTON DISTRIBUTIONSExperimental High Energy PhysicsHiggs bosonproton antiproton collisionsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGSYMMETRIESCDFB-JET IDENTIFICATION; STANDARD MODEL; ATLAS DETECTOR; PP COLLISIONS; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; ROOT-S=1.96 TEV; SEARCH; LHC; SYMMETRIESHigh Energy Physics::ExperimentLHC
researchProduct

Searching for New Physics in two-neutrino double beta decay with CUPID

2021

Abstract In the past few years, attention has been drawn to the fact that a precision analysis of two-neutrino double beta decay (2υββ) allows the study of interesting physics cases like the emission of Majoron bosons and possible Lorentz symmetry violation. These processes modify the summed-energy distribution of the two electrons emitted in 2υββ. CUPID is a next-generation experiment aiming to exploit 100Mo-enriched scintillating Li2MoO4 crystals, operating as cryogenic calorimeters. Given the relatively fast half-life of 100Mo 2υββ and the large exposure that can be reached by CUPID, we expect to measure with very high precision the 100Mo 2υββ spectrum shape, reaching great sensitivities…

CUPID Neutrinoless Double Beta Decay LNGS Particle Physics Neutrino Majorana NeutrinoHistoryLNGS[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]hiukkasfysiikkaNeutrinoless Double Beta DecayEducationcrystalCUPIDNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]double-beta decay: (2neutrino)Particle Physicsscintillation countersymmetry: violationbackgroundnew physics: search forMajorana Neutrinoneutriinotsensitivityviolation: LorentzMajoronComputer Science Applicationscalorimeter: cryogenicselectron: energy spectrumsymmetry: Lorentzydinfysiikka
researchProduct

Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

2014

We combine six measurements of the inclusive top-quark pair (tt̄) production cross section (σtt̄) from data collected with the CDF and D0 detectors at the Fermilab Tevatron with proton-antiproton collisions at s=1.96TeV. The data correspond to integrated luminosities of up to 8.8fb-1. We obtain a value of σtt̄=7.60±0.41pb for a top-quark mass of mt=172.5GeV. The contributions to the uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity. The result is in good agreement with the standard model expectation of 7.35-0.33+0.28pb at next-to-next-to-leading order and next-to-next-to leading logarithms in pert…

Top quarkP(P)OVER-BAR COLLISIONSTevatron7. Clean energylaw.inventionPhysics Particles & FieldsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSFERMILABFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderPhysicsP(P)OVER-BAR COLLISIONS; ROOT-S=1.96 TEV; PARTON DISTRIBUTIONS; HADRON COLLIDERS; LEADING ORDER; T(T)OVER-BAR; DETECTOR; LHC; QCD; FERMILABPerturbative QCD3. Good healthROOT-S=1.96 TEVPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCT(T)OVER-BARParticle physicsNuclear and High Energy PhysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsMASSNuclear physicsSEARCHColliderParticle PhysicsDETECTORAstrophysics::Galaxy AstrophysicsScience & Technologyhep-exLEADING ORDERHigh Energy Physics::PhenomenologyTop quarkQCDP(P)OVER-BAR COLLISIONS; T(T)OVER-BAR; DETECTOR; SEARCH; MASSPair productionPARTON DISTRIBUTIONSExperimental High Energy PhysicsCollider PhysicsCDFHigh Energy Physics::ExperimentParticle Physics; Collider Physics; Top quark
researchProduct