0000000001268724

AUTHOR

Teresa Giannini

showing 3 related works from this author

ESO-Hα 574 and Par-Lup 3-4 jets: Exploring the spectral, kinematical, and physical properties

2014

In this paper a comprehensive analysis of VLT / X-Shooter observations of two jet systems, namely ESO-H$\alpha$ 574 a K8 classical T Tauri star and Par-Lup 3-4 a very low mass (0.13~\Msun) M5 star, is presented. Both stars are known to have near-edge on accretion disks. A summary of these first X-shooter observations of jets was given in a 2011 letter. The new results outlined here include flux tables of identified emission lines, information on the morphology, kinematics and physical conditions of both jets and, updated estimates of $\dot{M}_{out}$ / $\dot{M}_{acc}$. Asymmetries in the \eso flow are investigated while the \para jet is much more symmetric. The density, temperature, and ther…

PhysicsAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaBalmer seriesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsformation ISM: jets and outflows accretion accretion disks line: identificationLuminosityStarssymbols.namesakeT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencesymbolsAstrophysics::Solar and Stellar AstrophysicsH-alphaAstrophysics::Earth and Planetary AstrophysicsEmission spectrumjets and outflows accretion accretion disks line: identification [formation ISM]Astrophysics::Galaxy AstrophysicsLine (formation)
researchProduct

Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments

2021

Aims. EXor-type objects are protostars that display powerful UV-optical outbursts caused by intermittent and powerful events of magnetospheric accretion. These objects are not yet well investigated and are quite difficult to characterize. Several parameters, such as plasma stream velocities, characteristic densities, and temperatures, can be retrieved from present observations. As of yet, however, there is no information about the magnetic field values and the exact underlying accretion scenario is also under discussion. Methods. We use laboratory plasmas, created by a high power laser impacting a solid target or by a plasma gun injector, and make these plasmas propagate perpendicularly to …

Shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesProtostarAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[PHYS]Physics [physics]accretion disksAstronomy and AstrophysicsRadiusPlasmashock wavesAccretion accretion disksAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Scienceinstabilitiesstars: individual: V1118 OriAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The diagnostic capability of iron limes

2013

N/A
researchProduct