0000000001269517

AUTHOR

Marilia T. C. Martins-costa

Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. II. Charge separation processes

A new approach to carry out molecular dynamics simulations of chemical reactions in solution using combined density functional theory/molecular mechanics potentials is presented. We focus our attention on the analysis of reactive trajectories, dynamic solvent effects and transmission coefficient rather than on the evaluation of free energy which is another important topic that will be examined elsewhere. In a previous paper we have described the generalities of this hybrid molecular dynamics method and it has been employed to investigate low energy barrier proton transfer process in water. The study of processes with activation energies larger than a few kT requires the use of specific tech…

research product

Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. I. Proton transfer in strongly H-bonded complexes

The first molecular dynamics (MD) simulation of a chemical process in solution with an ab initio description of the reactant species and a classical representation of the solvent is presented. We study the dynamics of proton (deuterium) transfer in strongly hydrogen-bonded systems characterized by an energy surface presenting a double well separated by a low activation barrier. We have chosen the hydroxyl-water complex in liquid water to analyze the coupling between the reactive system and the environment. The proton is transferred from one well to the other with a frequency close to 1 ps−1 which is comparable to the low-frequency band associated to hindered translations, diffusional transl…

research product