0000000001269591

AUTHOR

Germana Zaccagnini

showing 2 related works from this author

Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation

2022

Background: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interf…

Transcriptional ActivationPhysiologyfibrosismyofibroblastsVerteporfinheart failureYAP-Signaling ProteinsSettore MED/11 - Malattie dell'Apparato CardiovascolareSettore MED/23 - Chirurgia Cardiacafibrosis; heart failure; myofibroblasts; stromal cell; transcription factorsstromal cellPhosphoproteinscell mechanics; fibrosis; heart failure; myofibroblasts; stromal cell; YAP transcription factor;MiceYAP transcription factorcell mechanicsSettore CHIM/09 - Farmaceutico Tecnologico Applicativotranscription factorsTrans-ActivatorsAnimalsHumansCardiology and Cardiovascular MedicineAdaptor Proteins Signal Transducing
researchProduct

Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients

2018

Rationale: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. Objective: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. Methods and Results: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis reveale…

Male0301 basic medicinePhysiologyPopulationheartBiologyMixed Function OxygenasesCytosineMice03 medical and health sciencesProto-Oncogene ProteinsfibroblastsHuman Umbilical Vein Endothelial CellsAnimalsHumansMyocytes CardiacEpigeneticsEnzyme InhibitorseducationCells CulturedEpigenomicsDemethylationeducation.field_of_studyDNA methylationDNA methylation; epigenomics; fibroblasts; heart; hyperglycemia; metabolism; physiology; cardiology and cardiovascular medicineMesenchymal Stem CellsSettore MED/13 - ENDOCRINOLOGIABase excision repairMolecular biologyThymine DNA GlycosylaseMice Inbred C57BLHEK293 Cells030104 developmental biologyDNA demethylationDiabetes Mellitus Type 2epigenomicsDNA methylationKetoglutaric AcidshyperglycemiaThymine-DNA glycosylaseCardiology and Cardiovascular MedicineOxidation-ReductionmetabolismCirculation Research
researchProduct