0000000001276035
AUTHOR
Bertrand Belbis
showing 1 related works from this author
Construction of 3D Triangles on Dupin Cyclides
2011
This paper considers the conversion of the parametric Bézier surfaces, classically used in CAD-CAM, into patched of a class of non-spherical degree 4 algebraic surfaces called Dupin cyclides, and the definition of 3D triangle with circular edges on Dupin cyclides. Dupin cyclides was discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide has one parametric equation, two implicit equations, and a set of circular lines of curvature. The authors use the properties of these surfaces to prove that three families of circles (meridian arcs, parallel arcs, and Villarceau circles) can be computed on every Dupin cyclide. A geometric algorithm …