0000000001279091

AUTHOR

C. Ugur

A compact system for high precision time measurements ( < 14 ps RMS) and integrated data acquisition for a large number of channels

A high precision ( < 14 ps RMS time resolution) and high channel density ( ~ 256 channels) Time to Digital Converter (TDC) module (realized in FPGAs) with integrated DAQ is presented. The data is transported over up to 8 Gigabit-Ethernet or optical links with up to 3 Gb/s. Slow-Control information is transported over the same links. It can be attached directly to the detector, which allows the elimination of long cables and crate systems. The full 256 channel TDCs are expected to use approximately 30 W electrical power. The module size is 20 cm by 23 cm. Power is provided by a galvanically isolated 48 V low noise power supply. AddOn-boards adapt to the special needs of the detector to be re…

research product

Feasibility study for the measurement of πN transition distribution amplitudes at P¯ANDA in p¯p→J/ψπ0

The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is show…

research product

A 16 channel high resolution (&lt;11 ps RMS) Time-to-Digital Converter in a Field Programmable Gate Array

A 16-channel Time-to-Digital Converter (TDC) was implemented in a general purpose Field-Programmable Gate Array (FPGA). The fine time calculations are achieved by using the dedicated carry-chain lines. The coarse counter defines the coarse time stamp. In order to overcome the negative effects of temperature and power supply dependency bin-by-bin calibration is applied. The time interval measurements are done using 2 channels. The time resolution of channels are calculated for 1 clock cycle and a minimum of 10.3 ps RMS on two channels, yielding 7.3 ps RMS (10.3 ps/√2) on a single channel is achieved.

research product

Study of doubly strange systems using stored antiprotons

Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …

research product

Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs

Abstract The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and …

research product

Frontend Electronics for high-precision single photo-electron timing

The next generation of high-luminosity experiments requires excellent particle identification detectors, which calls for imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer\ud of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better\ud than 100 ps RMS is required for the Barrel DIRC to disentangle the complicated patterns created\ud on the image plane. R&amp;D studies have been performed to provide a design based on the TRB3\ud readout using FPGA-TDCs with a typical precision of 10 ps RMS and custom frontend electronics with high-bandwidth pre-amp…

research product

The upgraded HADES trigger and data acquisition system

The HADES experiment is a High Acceptance Di-Electron Spectrometer located at GSI in Darmstadt, Germany. Recently, its trigger and data acquisition system was upgraded. The main goal was to substantially increase the event rate capability by a factor of up to 20 to reach 100 kHz in light and 20 kHz in heavy ion reaction systems. The total data rate written to storage is about 400 MByte/s in peak.In this context, the complete read-out system was exchanged to FPGA-based platforms using optical communication. For data transport a general-purpose real-time network protocol was developed to meet the strong requirements of the system. In particular, trigger information has to reach all front-end …

research product