0000000001279112

AUTHOR

L. Gruber

The PANDA Barrel DIRC detector

Abstract The PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Efficient Particle Identification for a wide momentum range and the full solid angle is required for reconstructing the various physics channels of the PANDA program. Hadronic Particle Identification in the barrel region of the detector will be provided by a DIRC counter. The design is based on the successful BABAR DIRC with important improvements, such as focusing optics and fast photon timing. Several of these improvements, includin…

research product

Prototyping the PANDA Barrel DIRC

The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction deta…

research product

J/ψ suppression at forward rapidity in Pb–Pb collisions at sNN=5.02 TeV

The inclusive J/$\psi$ production has been studied in Pn-Pb and pp collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV, using the ALICE detector at the CERN LHC. The J/$\psi$ meson is reconstructed, in the centre-of-mass rapidity interval $2.5<y<4$ and in the transverse-momentum range $p_{\rm T}<12$ GeV/$c$, via its decay to a muon pair. In this Letter, we present results on the inclusive J/$\psi$ cross section in pp collisions at $\sqrt{s}=5.02$ TeV and on the nuclear modification factor $R_{\rm AA}$. The latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum $p_{\rm T}$ of…

research product

The ALICE Transition Radiation Detector: Construction, operation, and performance

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …

research product

A Disc-DIRC Cherenkov detector with high resolution micro channel plate photomultiplier tubes

The upcoming PANDA Experiment at FAIR in Germany will be equipped with a novel Cherenkov detector type for high-energy particle identification. This very compact Disc-DIRC detector uses a large disc-shaped fused silica plate of 2 cm thickness as its Cherenkov radiator. The internally reflected Cherenkov light is transported to the rim of the disc where it is focused by quartz light guides onto microchannel plate photomultiplier tubes (MCP-PMTs) with high spatial resolution (pitch 0.5 mm) and high time resolution (σ ≈ 100 ps). The device has an active area of about 3 m2 and will be able to identify pions and kaons with a separation power of more than 3σ in the momentum range up to 4 GeV/c. I…

research product

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|&lt;0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

research product

Martensitic phase transformation cubic-orthorhombic of NaCN and (NaCN)0.98 (KCN)0.02

The ferroelastic cubic-orthorhombic transition of single crystals NaCN and (NaCN)0.98 (KCN)0.02 has been studied by x-ray diffraction. The domain configuration obtained is consistent with the Wechsler, Lieberman, Read-model for martensitic transformations.

research product

Measurement of CP asymmetry in Bs0 → Ds ∓K± decays

Journal of high energy physics 2018(3), 59 (2018). doi:10.1007/JHEP03(2018)059

research product

Feasibility study for the measurement of πN transition distribution amplitudes at P¯ANDA in p¯p→J/ψπ0

The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is show…

research product

Effects of pressure and of thermal history on the structural phase transition of KCN

The cubic-noncubic structural phase transition of a KCN single crystal is studied as a function of thermal history and of hydrostatic pressure up to 2 kbar. The standard sequence of phases is cubic-monoclinic-orthorhombic on cooling and orthorhombic-cubic on heating. The monoclinic phase is also absent in first cooling runs at low pressures (p≦250 bar). The width of the monoclinic field inp, T phase diagram is increased in second cooling runs. The effects are discussed in terms of a martensitic transformation behavior and random strain fields.

research product

Breakthrough in the lifetime of microchannel plate photomultipliers

Abstract Cherenkov detectors using the DIRC (Detection of Internally Reflected Cherenkov Light) principle are foreseen for particle identification in the P ¯ ANDA experiment at FAIR. Promising sensors for the detection of the Cherenkov light are the so-called micro-channel plate (MCP) photomultipliers (PMT). They have an excellent time resolution, can be operated at high gain for single photon detection and have a high resistivity against magnetic fields. The disadvantage of these devices was their limited lifetime, due to damage by feedback ions on the photocathode. The lifetime of various types of MCP-PMTs from different manufactures has been tested under conditions similar to that in the…

research product

Development of an Endcap DIRC for PANDA

Abstract The aim of this research is to develop a planar DIRC detector showing advantages and performance similar to a classical, barrel shaped DIRC, but at smaller polar angles which cannot be accessed using a cylindrical geometry. The device will complement the PANDA Barrel DIRC by covering polar angles from 5° to 22°. The envisaged π /K-separation is ≥ 3 σ up to 4 GeV/c. A major challenge is the adaption of the device to the PANDA environment including a magnetic field of ~1–2 T, high rates and radiation, limited space for optics and sensors as well as the lack of a common first-level trigger. This paper discusses a detector design which forms a compromise between these constraints and a…

research product

Study of doubly strange systems using stored antiprotons

Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …

research product

The DIRC detectors at the PANDA experiment

PANDA is an experiment at the new FAIR facility at GSI and will, among other physics goals,\ud perform charmonium spectroscopy and search for gluonic excitations using high luminosity antiproton beams up to 15 GeV/c. A high performance particle identification system applying DIRC\ud detectors will allow pion/kaon separation up to 4 GeV/c. A Barrel DIRC with fused silica radiator bars or plates will surround the target at a radial distance of 48 cm and will cover a polar\ud angle range of 22 to 140 degrees; a novel Endcap Disk DIRC built of a segmented fused silica\ud disk of 210 cm diameter will be installed in the forward region to cover the polar angles from\ud 5 to 22 degrees. The design…

research product

Jet-like correlations with neutral pion triggers in pp and central Pb–Pb collisions at 2.76 TeV

Physics letters / B B763, 238 - 250 (2016). doi:10.1016/j.physletb.2016.10.048

research product

Kaon femtoscopy in Pb-Pb collisions at √sNN=2.76 TeV

We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at √ s NN = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The…

research product

Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs

Abstract The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and …

research product

New developments of the PANDA Disc DIRC detector

The DIRC principle (Detection of Internally Reflected Cherenkov light) allows a very compact\ud approach for particle identification detectors. The PANDA detector at the future FAIR facility at\ud GSI will use a Barrel-DIRC for the central region and a Disc DIRC for the forward angular region\ud between 5◦\ud and 22◦\ud . It will be the first time that a Disc DIRC is used in a high performance 4π\ud detector. To achieve this aim, different designs and technologies have been evaluated and tested.\ud This article will focus on the mechanical design and integration of the Disc DIRC with respect to\ud the PANDA environment.

research product

Improved lifetime of microchannel-plate PMTs

Abstract The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈ 6 C / cm 2 integrated anode charge without a substa…

research product

The Barrel DIRC of PANDA

Cooled antiproton beams of unprecedented intensities in the momentum range of 1.5-15 GeV/c will be used for the PANDA experiment at FAIR to perform high precision experiments in the charmed quark sector. The PANDA detector will investigate antiproton annihilations with beams in the momentum range of 1.5 GeV/c to 15 GeV/c on a fixed target. An almost 4π acceptance double spectrometer is divided in a forward spectrometer and a target spectrometer. The charged particle identification in the latter is performed by ring imaging Cherenkov counters employing the DIRC principle.

research product

Simulation and reconstruction of the PANDA Barrel DIRC

Hadronic particle identification (PID) in the barrel region of the PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. To optimize the performance and reduce the detector cost, detailed simulations of different design elements, such as the width of the radiators, the shape of the expansion volume, and the type of focusing system, were performed using Geant. Custom reconstruction algorithms were developed to match the detector geometry. We will discuss the single photon resolution and photon yield as well as the PID performance for the Barrel DIRC baseli…

research product

Frontend Electronics for high-precision single photo-electron timing

The next generation of high-luminosity experiments requires excellent particle identification detectors, which calls for imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer\ud of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better\ud than 100 ps RMS is required for the Barrel DIRC to disentangle the complicated patterns created\ud on the image plane. R&amp;D studies have been performed to provide a design based on the TRB3\ud readout using FPGA-TDCs with a typical precision of 10 ps RMS and custom frontend electronics with high-bandwidth pre-amp…

research product