Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials
An important class of biomaterials is composed of layered networks of elastomeric fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. The present work addresses this issue in two ways. First, using methods of geometric probability we develop theoretical estimates for the linear and areal fiber intersection densities for two-dimensional fibrous networks. These are expressed in terms of the fiber density and orientation distribution function, both of which are relatively easy to measure properties. Secondly, we develop a random walk algorithm for g…