The structure of the moduli spaces of toric dynamical systems
We consider complex-balanced mass-action systems, or toric dynamical systems. They are remarkably stable polynomial dynamical systems arising from reaction networks seen as Euclidean embedded graphs. We study the moduli spaces of toric dynamical systems, called the toric locus: given a reaction network, we are interested in the topological structure of the set of parameters giving rise to toric dynamical systems. First we show that the complex-balanced equilibria depend continuously on the parameter values. Using this result, we prove that the toric locus of any toric dynamical system is connected. In particular, we emphasize its product structure: it is homeomorphic to the product of the s…