Multi-Path U-Net Architecture for Cell and Colony-Forming Unit Image Segmentation
U-Net is the most cited and widely-used deep learning model for biomedical image segmentation. In this paper, we propose a new enhanced version of a ubiquitous U-Net architecture, which improves upon the original one in terms of generalization capabilities, while addressing several immanent shortcomings, such as constrained resolution and non-resilient receptive fields of the main pathway. Our novel multi-path architecture introduces a notion of an individual receptive field pathway, which is merged with other pathways at the bottom-most layer by concatenation and subsequent application of Layer Normalization and Spatial Dropout, which can improve generalization performance for small datase…