0000000001286875
AUTHOR
K. G. Popov
Magnetic-field-induced reentrance of Fermi-liquid behavior and spin-lattice relaxation rates in YbCu_{5-x}Au_x
A strong departure from Landau-Fermi liquid (LFL) behavior have been recently revealed in observed anomalies in both the magnetic susceptibility $\chi$ and the muon and $\rm ^{63}Cu$ nuclear spin-lattice relaxation rates $1/T_1$ of ${\rm {YbCu_{5-x}Au_x}}$ ($x=0.6$). We show that the above anomalies along with magnetic-field-induced reentrance of LFL properties are indeed determined by the scaling behavior of the quasiparticle effective mass. We obtain the scaling behavior theoretically utilizing our approach based on fermion condensation quantum phase transition (FCQPT) notion. Our theoretical analysis of experimental data on the base of FCQPT approach permits not only to explain above two…
Common field-induced quantum critical point in high-temperature superconductors and heavy-fermion metals
High-temperature superconductors (HTSC) and heavy-fermion (HF) metals exhibit extraordinary properties. They are so unusual that the traditional Landau paradigm of quasiparticles does not apply. It is widely believed that utterly new concepts are required to describe the underlying physics. There is a fundamental question: how many concepts do we need to describe the above physical mechanisms? This cannot be answered on purely experimental or theoretical grounds. Rather, we have to use both of them. Recently, in HTSC, the new and exciting measurements have been performed, demonstrating a puzzling magnetic field induced transition from non-Fermi liquid to Landau Fermi liquid behavior. We sho…
Comment on "Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice" (Punk, M., Chowdhury, D. & Sachdev, S. Nature Physics 10, 289-293 (2014))
The authors of a recent paper evidently take the view that the whole of progress made toward a theoretical understanding of the physics of quantum spin liquids (QSL) is associated with models of the kind proposed and applied in their present work. As motivation for this work, they observe that in contrast to existing theoretical models of both gapped and gapless spin liquids, which give rise to sharp dispersive features in the dynamic structure factor, the measured dynamic structure factor reveals an excitation continuum that is remarkably flat as a function of frequency. They go on to assert that "so far, the only theoretical model for a spin liquid state on the kagome lattice which natura…