0000000001287154

AUTHOR

Alexandra V. Yurkovskaya

showing 8 related works from this author

Excitation of singlet–triplet coherences in pairs of nearly-equivalent spins

2019

We present approaches for an efficient excitation of singlet–triplet coherences in pairs of nearly-equivalent spins. Standard Nuclear Magnetic Resonance (NMR) pulse sequences do not excite these coherences at all or with very low efficiency. The single quantum singlet–triplet coherences, here termed the outer singlet–triplet coherences, correspond to lines of low intensity in the NMR spectrum of a strongly-coupled spin pair (they are sometimes referred to as “forbidden transitions”), whereas the zero-quantum coherences, here termed the inner singlet–triplet coherences, do not have a direct spectral manifestation. In the present study, we investigated singlet–triplet coherences in a pair of …

PhysicsSpinsRelaxation (NMR)General Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMagnetic fieldMagnetizationCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical ChemistryAtomic physics0210 nano-technologyAnisotropyQuantumExcitationCoherence (physics)Physical Chemistry Chemical Physics
researchProduct

Photochemically induced dynamic nuclear polarization of heteronuclear singlet order

2021

Photochemically induced dynamic nuclear polarization (photo-CIDNP) is a method to hyperpolarize nuclear spins using light. In most cases, CIDNP experiments are performed in high magnetic fields and the sample is irradiated by light inside a nuclear magnetic resonance (NMR) spectrometer. Here we demonstrate photo-CIDNP hyperpolarization generated in the Earth's magnetic field and under zero- to ultralow-field (ZULF) conditions. Irradiating a sample containing tetraphenylporphyrin and para-benzoquinone for several seconds with light-emitting diodes produces strong hyperpolarization of 1H and 13C nuclear spins, enhancing the NMR signals more than 200 times. The hyperpolarized spin states at th…

Chemical Physics (physics.chem-ph)Materials scienceSpin statesSpinsField (physics)CIDNPPhysics::Medical PhysicsFOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPolarization (waves)7. Clean energy01 natural sciences0104 chemical sciencesMagnetic fieldHeteronuclear moleculePhysics - Chemical Physicsddc:530General Materials ScienceSinglet statePhysical and Theoretical ChemistryAtomic physics0210 nano-technology
researchProduct

Chapter 23. Singlet Order in Heteronuclear Spin Systems

2020

The concept of heteronuclear Long-Lived spin States (LLSs) is introduced. In the simplest case of a pair of heteronuclei, such states are given by the singlet order of the spin pair, which can be efficiently sustained under Zero or Ultra-Low Field (ZULF) conditions. Here we describe two possible ways of detecting long-lived singlet order of heteronuclei: detection at ZULF conditions and NMR (Nuclear Magnetic Resonance) detection at high field utilising fast field-cycling. A theoretical description of the underlying spin dynamics is presented for both cases; the discussion is supported by experimental examples of LLSs in 13CH groups. The generality of these phenomena is discussed, as well as…

PhysicsHeteronuclear moleculeSpin statesField (physics)Spin dynamicsQuantum mechanicsOrder (ring theory)Condensed Matter::Strongly Correlated ElectronsHigh fieldSinglet stateSpin-½
researchProduct

Algorithmic cooling of nuclear spins using long-lived singlet order

2020

Algorithmic cooling methods manipulate an open quantum system in order to lower its temperature below that of the environment. We achieve significant cooling of an ensemble of nuclear spin-pair systems by exploiting the long-lived nuclear singlet state, which is an antisymmetric quantum superposition of the "up" and "down" Zeeman states. The effect is demonstrated by nuclear magnetic resonance (NMR) experiments on a molecular system containing a coupled pair of near-equivalent 13C nuclei. The populations of the system are subjected to a repeating sequence of cyclic permutations separated by relaxation intervals. The long-lived nuclear singlet order is pumped well beyond the unitary limit. T…

PhysicsThermal equilibriumZeeman effect010304 chemical physicsSpinsAntisymmetric relationNuclear TheoryRelaxation (NMR)Quantum superpositionGeneral Physics and Astronomy010402 general chemistry7. Clean energy01 natural sciences0104 chemical sciencessymbols.namesakeOpen quantum system13. Climate action0103 physical sciencessymbolsSinglet statePhysical and Theoretical ChemistryAtomic physicsThe Journal of Chemical Physics
researchProduct

Correlation of high-field and zero- to ultralow-field NMR properties using 2D spectroscopy

2021

The field of zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is currently experiencing a rapid growth, owing to the progress in optical magnetometry, and also attractive features of ZULF NMR, such as low hardware cost and excellent spectral resolution achieved under ZULF conditions. In this work, an approach is proposed and demonstrated for simultaneous acquisition of ZULF-NMR spectra of individual 13C-containing isotopomers of chemical compounds in a complex mixture. The method makes use of fast field cycling, so that the spin evolution takes place at ZULF conditions, whereas signal detection is performed in a high-field NMR spectrometer. This method has excellent sensitivi…

Chemical Physics (physics.chem-ph)Materials science010304 chemical physicsField (physics)SpectrometerMagnetometerGeneral Physics and AstronomyFOS: Physical sciences010402 general chemistry01 natural sciencesMolecular physicsSpectral line0104 chemical sciencesIsotopomerslaw.inventionHeteronuclear moleculelawPhysics - Chemical Physics0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical ChemistrySpectral resolutionSpectroscopy
researchProduct

Hyperpolarization of cis ‐ 15 N 2 ‐Azobenzene by Parahydrogen at Ultralow Magnetic Fields**

2021

The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on 15 N2 -azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. Azobenzene exists in two isomers, trans and cis. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suit…

Materials scienceSpin statesSpinsSpin polarization02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologySpin isomers of hydrogen01 natural sciences7. Clean energyAtomic and Molecular Physics and Optics0104 chemical sciences3. Good healthchemistry.chemical_compoundMagnetizationAzobenzenechemistryHyperpolarization (physics)Singlet statePhysical and Theoretical ChemistryAtomic physics0210 nano-technologyChemPhysChem
researchProduct

Constant-adiabaticity pulse schemes for manipulating singlet order in 3-spin systems with weak magnetic non-equivalence

2021

Abstract Parahydrogen-induced polarization (PHIP) is a source of nuclear spin hyperpolarization, and this technique allows for the preparation of biomolecules for in vivo metabolic imaging. PHIP delivers hyperpolarization in the form of proton singlet order to a molecule, but most applications require that a heteronuclear (e.g. 13C or 15N) spin in the molecule is hyperpolarized. Here we present high field pulse methods to manipulate proton singlet order in the [1-13C]fumarate, and in particular to transfer the proton singlet order into 13C magnetization. We exploit adiabatic pulses, i.e., pulses with slowly ramped amplitude, and use constant-adiabaticity variants: the spin Hamiltonian is va…

PhysicsThermal equilibriumNuclear and High Energy PhysicsProtonSpinsBiophysics010402 general chemistryCondensed Matter Physics01 natural sciencesBiochemistry030218 nuclear medicine & medical imaging0104 chemical sciences03 medical and health sciencesMagnetization0302 clinical medicineSinglet stateHyperpolarization (physics)Atomic physicsAdiabatic processSpin (physics)Journal of Magnetic Resonance
researchProduct

Algorithmic Cooling of Nuclear Spin Pairs using a Long-Lived Singlet State

2019

Algorithmic cooling methods manipulate an open quantum system in order to lower its temperature below that of the environment. We show that significant cooling is achieved on an ensemble of spin-pair systems by exploiting the long-lived nuclear singlet state, which is an antisymmetric quantum superposition of the "up" and "down" qubit states. The effect is demonstrated by nuclear magnetic resonance (NMR) experiments on a molecular system containing a coupled pair of near-equivalent 13C nuclei. The populations of the system are subjected to a repeating sequence of cyclic permutations separated by relaxation intervals. The long-lived nuclear singlet order is pumped well beyond the unitary lim…

Chemical Physics (physics.chem-ph)Quantum PhysicsPhysics - Chemical PhysicsFOS: Physical sciencesApplied Physics (physics.app-ph)Physics - Applied PhysicsQuantum Physics (quant-ph)
researchProduct