6533b861fe1ef96bd12c459c
RESEARCH PRODUCT
Hyperpolarization of cis ‐ 15 N 2 ‐Azobenzene by Parahydrogen at Ultralow Magnetic Fields**
Hans-martin ViethKirill F. SheberstovAlexandra V. YurkovskayaVitaly P. KozinenkoHerbert ZimmermannKonstantin L. IvanovAlexey S. Kiryutinsubject
Materials scienceSpin statesSpinsSpin polarization02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologySpin isomers of hydrogen01 natural sciences7. Clean energyAtomic and Molecular Physics and Optics0104 chemical sciences3. Good healthchemistry.chemical_compoundMagnetizationAzobenzenechemistryHyperpolarization (physics)Singlet statePhysical and Theoretical ChemistryAtomic physics0210 nano-technologydescription
The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on 15 N2 -azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. Azobenzene exists in two isomers, trans and cis. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suitable magnetic fields. Enhancement factors (relative to 9.4 T) reach up to 3000 for 15 N spins and up to 30 for the 1 H spins. We compare two approaches to observe either hyperpolarized magnetization of 15 N/1 H spins, or hyperpolarized singlet order of the 15 N spin pair. The results presented here will be useful for further experiments in which hyperpolarized cis-15 N2 -azobenzene is switched by light to trans-15 N2 -azobenzene for storing the produced hyperpolarization in the long-lived spin state of the 15 N pair of trans-15 N2 -azobenzene.
year | journal | country | edition | language |
---|---|---|---|---|
2021-06-08 | ChemPhysChem |