0000000001287482

AUTHOR

Claudio Macculi

0000-0002-7887-1485

showing 16 related works from this author

Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

2016

ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …

CryostatX-ray AstronomyAtomic and Molecular Physics and OpticATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Condensed Matter Physics; Atomic and Molecular Physics and Optics; Materials Science (all)ShieldsCondensed Matter Physic01 natural sciencesThermal Filterlaw.invention010309 opticsTelescopeATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Atomic and Molecular Physics and Optics; Materials Science (all); Condensed Matter PhysicsOpticsSettore FIS/05 - Astronomia E AstrofisicaConceptual designlawAtomic and Molecular Physics0103 physical sciencesGeneral Materials ScienceElectronics010303 astronomy & astrophysicsThermal FiltersPhysicsX-ray astronomyX-IFUbusiness.industryDetectorCondensed Matter PhysicsAtomic and Molecular Physics and OpticsATHENACardinal pointMaterials Science (all)and Opticsbusiness
researchProduct

The Athena X-ray Integral Field Unit (X-IFU)

2016

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.

Computer science[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyObservatoriesField of viewAthena; Instrumentation; Space telescopes; X-ray Integral Field Unit; X-ray spectroscopy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering7. Clean energy01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawObservatoryAthena Instrumentation Space telescopes X-ray spectroscopy X-ray Integral Field UnitAthena010303 astronomy & astrophysicsInstrumentation[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SpectroscopyHigh Energy Astrophysical Phenomena (astro-ph.HE)Equipment and servicesApplied MathematicsX-rayComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsProceedings of SPIE - the International Society for Optical EngineeringX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Spectral resolutionFOS: Physical sciencesMinute of arcSpace telescopesTelescope0103 physical sciencesX-raysElectronicOptical and Magnetic Materials[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Spectral resolutionElectrical and Electronic Engineering010306 general physicsSpectroscopyInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingPixelAstrophysics - Astrophysics of GalaxiesAstrophysics of Galaxies (astro-ph.GA)X-ray Integral Field Unit[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Telescopes
researchProduct

Study of Microcalorimeters for Astrophysics Applications

2008

In the framework of the Italian Space Agency R&D project, which is focused on the development of microcalorimeters for applications on astrophysics, we are studying different methods for TES microcalorimeter production and developing simulations of various absorber performances. In this paper are presented preliminary results obtained with two different geometries: front back and planar on SiN membrane.

PhysicsGeneral Materials ScienceAstrophysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsX-ray detectors microcalorimeters TES
researchProduct

The performance of the ATHENA X-ray Integral Field Unit

2018

The X-ray Integral Field Unit (X-IFU) is a next generation microcalorimeter planned for launch onboard the Athena observatory. Operating a matrix of 3840 superconducting Transition Edge Sensors at 90 mK, it will provide unprecedented spectro-imaging capabilities (2.5 eV resolution, for a field of view of 5') in the soft X-ray band (0.2 up to 12 keV), enabling breakthrough science. The definition of the instrument evolved along the phase A study and we present here an overview of its predicted performances and their modeling, illustrating how the design of the X-IFU meets its top-level scientific requirements. This article notably covers the energy resolution, count-rate capability, quantum …

Field (physics)X-ray Integral Fiel UnitPhase (waves)Field of viewCondensed Matter Physicmicrocalorimeter01 natural sciencesX-rayMatrix (mathematics)Settore FIS/05 - Astronomia E AstrofisicaObservatory0103 physical sciencesAthenaAerospace engineeringElectrical and Electronic Engineering010306 general physicsPhysics010308 nuclear & particles physicsbusiness.industryElectronic Optical and Magnetic MaterialResolution (electron density)Computer Science Applications1707 Computer Vision and Pattern RecognitionApplied MathematicQuantum efficiencybusinessEnergy (signal processing)performance
researchProduct

The Cryogenic AntiCoincidence Detector Project for ATHENA+: An Overview Up to the Present Status

2014

ATHENA+ is a space mission proposal for the next ESA L2-L3 slot. One of the focal plane instruments is the X-ray integral field unit (X-IFU) working in the energy range 0.3–10 keV. It is a multi-array based on TES detectors aimed at characterizing faint or diffuse sources (e.g. WHIM or galaxy outskirt). The X-IFU will be able to achieve the required sensitivity if a low background is guaranteed. The studies performed by GEANT4 simulations depict a scenario where the use of an active anticoincidence (AC) is mandatory to reduce the background expected in L2 orbit down to the goal level of 0.005 cts cm $$^{-2}$$  s $$^{-1}$$  keV $$^{-1}$$ . This is possible using a cryogenic anticoincidence (…

PhysicsSiliconbusiness.industryAnticoincidence detectorDetectorOrder (ring theory)SpaceTES Silicon Iridium Anticoincidence detector SpaceIridiumCondensed Matter PhysicsAtomic and Molecular Physics and OpticsGalaxyOpticsCardinal pointAnticoincidence detector; Iridium; Silicon; Space; TES; Atomic and Molecular Physics and Optics; Materials Science (all); Condensed Matter PhysicsSettore FIS/05 - Astronomia E AstrofisicaAtomic and Molecular PhysicsOrbit (dynamics)General Materials ScienceSensitivity (control systems)Materials Science (all)and OpticsbusinessTESEnergy (signal processing)
researchProduct

The x-ray microcalorimeter spectrometer onboard Athena

2012

Trabajo presentado a la conferencia: "Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray" celebrada en Amsterdam (Holanda) el 1 de julio de 2012.-- et al.

PhysicsSpacecraftSpectrometerCalorimeter (particle physics)business.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsMissionslaw.inventionX-rayTelescopeX-ray missions micro-calorimeter AthenaOpticsCardinal pointSettore FIS/05 - Astronomia E AstrofisicaMicro-calorimeterAthena; Micro-calorimeter; Missions; X-raylawAthenaTransition edge sensorSpectral resolutionbusiness
researchProduct

The TES-based cryogenic anticoincidence detector for IXO: First results from large area prototypes

2010

The technique which combines high resolution spectroscopy with imaging capability is a powerful tool to extract fundamental information in X-ray Astrophysics and Cosmology. TES (Transition Edge Sensors)-based microcalorimeters match at best the requirements for doing fine spectroscopy and imaging of both bright (high count rate) and faint (poor signal-to-noise ratio) sources. For this reason they are considered among the most promising detectors for the next high energy space missions and are being developed for use on the focal plane of the IXO (International X-ray Observatory) mission. In order to achieve the required signal-to-noise ratio for faint or diffuse sources it is necessary to r…

Cryogenic Detectors; IXO; SQUID; TES; X-ray; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringCryogenic DetectorsSQUIDSpace explorationX-raySignal-to-noise ratioOpticsSettore FIS/05 - Astronomia E AstrofisicaObservatoryElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringPhysicsSpectrometerPixelbusiness.industryApplied MathematicsDetectorPulse durationComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCardinal pointIXObusinessTES Cryogenic Detectors X-ray SQUID IXOTES
researchProduct

The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

2014

“The Hot and Energetic Universe” is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called “Integral field spectroscopy”, by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5’ in diameter) with an angular resolution of 5” and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy …

SimulationsSiliconWarm–hot intergalactic mediumField of viewOrbital mechanicsOpticsField spectroscopyGalactic astronomyX-raysElectronicAngular resolutionOptical and Magnetic MaterialsElectrical and Electronic EngineeringAnticoincidenceImage resolutionSpectroscopyPhysicsSpatial resolutionEquipment and servicesSpectrometerSpectrometersbusiness.industrySensorsApplied MathematicsDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsATHENAAnticoincidence; ATHENA; Cryogenic detectors; TES; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringCryogenic detectorsTransition edge sensorbusinessTES
researchProduct

Magnetic shielding of soft protons in future X-ray telescopes: the case of the ATHENA Wide Field Imager

2018

Both the interplanetary space and the Earth magnetosphere are populated by low energy ($\leq300$ keV) protons that are potentially able to scatter on the reflecting surface of Wolter-I optics of X-ray focusing telescopes and reach the focal plane. This phenomenon, depending on the X-ray instrumentation, can dramatically increase the background level, reducing the sensitivity or, in the most extreme cases, compromising the observation itself. The use of a magnetic diverter, deflecting protons away from the field of view, requires a detailed characterization of their angular and energy distribution when exiting the mirror. We present the first end-to-end Geant4 simulation of proton scattering…

PhysicsField (physics)ProtonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsMagnetosphereFOS: Physical sciencesAstronomy and AstrophysicsX-ray telescopeField of view01 natural sciencesComputational physicsMagnetic field010309 opticsCardinal pointSpace and Planetary Science0103 physical sciencesElectromagnetic shieldinginstrumentation: miscellaneous – telescopesAstrophysics - Instrumentation and Methods for Astrophysics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

The Cryogenic Anticoincidence Detector for ATHENA-XMS

2012

The TES cryogenic detectors, due to their high spectral resolution and imaging capability in the soft X-ray domain, are the reference devices for the next proposed space missions whose aims are to characterize the spectra of faint or diffuse sources. ATHENA is the re-scoped IXO mission, and one of its focal plane instrument is the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV. XMS will be able to achieve the proposed scientific goals if a background lower than 0.02 cts/cm2/s/keV is guaranteed. The studies performed by GEANT4 simulations depict a scenario where it is mandatory to use an active Anti-Coincidence (AC) to reduce the expected background in the L…

PhysicsSpectrometerPhysics::Instrumentation and Detectorsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstrophysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSpace explorationSpectral lineLow temperature detectors · Astronomy and astrophysics · Superconductivity · Silicon · TESSettore FIS/05 - Astronomia E AstrofisicaCardinal pointOpticsOrbit (dynamics)General Materials ScienceSpectral resolutionbusinessEnergy (signal processing)Journal of Low Temperature Physics
researchProduct

Baseline design of the thermal blocking filters for the X-IFU detector on board ATHENA

2014

ATHENA is an advanced X-ray observatory designed by a large European consortium to address the science theme "Hot and Energetic Universe" recently selected by ESA for L2 – the second Large-class mission within the Cosmic Vision science program (launch scheduled in 2028). One of the key instruments of the mission is the X-ray Integral Field Unit (X-IFU), an array of Transition Edge Sensor (TES) micro-calorimeters with high energy resolution (2.5 eV @ 6 keV) in the energy range 0.2÷12 keV, operating at the focal plane of a large effective area high angular resolution (5" HEW) grazing incidence X-ray telescope. The X-IFU operates at temperatures below 100 mK and thus requires a sophisticated c…

CryostatCosmic VisionVisionShieldsX-ray telescopeGrazing incidencelaw.inventionTelescopeOpticsSettore FIS/05 - Astronomia E AstrofisicalawX-raysElectronicmicro-calorimeterOptical and Magnetic MaterialsElectrical and Electronic EngineeringX-ray telescopesPhysicsX-IFUSpatial resolutionSounding rocketEquipment and servicesbusiness.industrySensorsApplied MathematicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsOptical Blocking FiltersComputer Science Applications1707 Computer Vision and Pattern RecognitionDetector arraysCondensed Matter PhysicsATHENAmissionsCultural heritageTransition edge sensorbusinessATHENA; micro-calorimeter; missions; Optical Blocking Filters; X-IFU; X-rays; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringTelescopes
researchProduct

The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

2023

The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (i…

X-IFU: The X-ray Integral Field UnitCosmology and Nongalactic Astrophysics (astro-ph.CO)The X-ray Integral Field Unit [X-IFU]Solar and stellar astrophysicsFOS: Physical sciences/dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Settore FIS/05 - Astronomia E AstrofisicaX-raysSDG 7 - Affordable and Clean EnergyInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)High Energy Astrophysical Phenomena (astro-ph.HE)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyAstrophysics of GalaxiesAthena: the advanced telescope for high energy astrophysicsAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesAstrophysical phenomenaSpace instrumentationAstrophysics - Solar and Stellar AstrophysicsHigh energySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]the advanced telescope for high energy astrophysics [Athena]Athena: the advanced telescope for high energy astrophysics · X-IFU: The X-ray Integral Field Unit · Space instrumentation · X-rays · ObservatoryObservatoryAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSDG 12 - Responsible Consumption and ProductionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The focal plane assembly for the Athena X-ray Integral Field Unit instrument

2016

This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off…

CryostatPhysics::Instrumentation and DetectorsAperture01 natural sciencesfrequency division multiplexingfocal plane assemblySettore FIS/05 - Astronomia E AstrofisicaOpticsSensor array0103 physical sciencesElectronicSQUID amplifierAthenaOptical and Magnetic MaterialsElectrical and Electronic Engineeringta216010306 general physicsta113010302 applied physicsPhysicsX-IFUta114ta213business.industryStray lightApplied Mathematicstransition edge sensorDetectorAstrophysics::Instrumentation and Methods for AstrophysicsX-ray microcalorimeterComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCardinal pointElectromagnetic shieldingcryogenic anti-coincidence detectorX-ray microcalorimeter transition edge sensor cryogenic anti-coincidence detector SQUID amplifier frequency division multiplexing Athena X-IFU focal plane assemblyTransition edge sensorbusinessAthena; cryogenic anti-coincidence detector; focal plane assembly; frequency division multiplexing; SQUID amplifier; transition edge sensor; X-IFU; X-ray microcalorimeter; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringSPIE Proceedings
researchProduct

The X-ray Integral Field Unit (X-IFU) for Athena

2014

Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics princi…

PhysicsCosmic VisionEquipment and servicesSpectrometerSpectral resolutionSpectrometersX-ray opticsbusiness.industrySensorsVisionDetectorAstrophysics::Instrumentation and Methods for AstrophysicsField of viewOpticsCardinal pointParticlesSettore FIS/05 - Astronomia E AstrofisicaX-raysImaging systemsAngular resolutionSpectral resolutionElectronicsbusinessImage resolution
researchProduct

The cryogenic anticoincidence detector for ATHENA-XMS: preliminary results from the new prototype

2012

ATHENA has been the re-scoped IXO mission, and one of the foreseen focal plane instrument was the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV, which was a kilo-pixel array based on TES (Transition Edge Sensor) detectors. The need of an anticoincidence (AC) detector is legitimated by the results performed with GEANT4 simulations about the impact of the non x-ray background onto XMS at L2 orbit (REQ. < 0.02 cts/cm2/s/keV). Our consortium has both developed and tested several samples, with increasing area, in order to match the large area of the XMS (64 mm2). Here we show the preliminary results from the last prototype. The results achieved in this work off…

Anticoincidence detectorLow temperature DetectorAnticoincidence detectorsAstrophysicsOrbital mechanicslaw.inventionOpticslawElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringAnticoincidence detectors; High Energy Astrophysics; Low temperature Detectors; TES; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringPhysicsLow temperature DetectorsSpectrometerbusiness.industryApplied MathematicsElectronic Optical and Magnetic MaterialBolometerDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsApplied MathematicCardinal pointMillimeterSatelliteTransition edge sensorHigh Energy AstrophysicbusinessTESHigh Energy AstrophysicsSPIE Proceedings
researchProduct

The ATHENA X-ray Integral Field Unit (X-IFU)

2018

Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States.

Point spread functionPhotonAstrophysics::High Energy Astrophysical PhenomenaField of viewAthena; Instrumentation; Space telescopes; X-ray Integral Field Unit; X-ray spectroscopy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringCondensed Matter PhysicLarge format01 natural sciences7. Clean energySpace telescopeslaw.inventionTelescopePhysics::Popular PhysicsSettore FIS/05 - Astronomia E AstrofisicaOpticslawPhysics::Plasma Physics0103 physical sciencesElectronicAthenaOptical and Magnetic MaterialsSpectral resolutionElectrical and Electronic Engineering010306 general physics010303 astronomy & astrophysicsInstrumentationPhysicsSpectrometerbusiness.industryElectronic Optical and Magnetic MaterialApplied MathematicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physics115 Astronomy Space sciencePhysics::History of PhysicsApplied MathematicSpace telescopeX-ray Integral Field UnitX-ray spectroscopybusiness
researchProduct