0000000001287924

AUTHOR

Matthias Oelze

showing 102 related works from this author

Environmental stressors and cardiovascular risk: Impact of environmental noise exposure on vascular oxidative stress and damage

2018

Epidemiological studies have demonstrated that traffic noise exposure is associated with cardiovascular diseases such as arterial hypertension, myocardial infarction and stroke. Persistent chronic noise exposure increases the risk of cardiovascular and metabolic diseases such as arterial hypertension, coronary artery disease, diabetes and stroke. Large epidemiological studies (reviewed in Munzel et al. Eur. Heart J. 2017, 38 (8):550–556) point towards a link between the incidence of ischemic heart diseases and exposure to noise, supporting its role as an independent cardiovascular risk factor. Recently, the underlying molecular mechanisms leading to noise-dependent adverse effects on the va…

medicine.medical_specialtybusiness.industrymedicine.diseasemedicine.disease_causeBiochemistryCoronary artery diseasePhysiology (medical)Diabetes mellitusInternal medicineCardiologymedicineMyocardial infarctionRisk factorEnvironmental noiseAdverse effectbusinessStrokeOxidative stressFree Radical Biology and Medicine
researchProduct

Disturbed Lipid Metabolism in Diabetic Patients with Manifest Coronary Artery Disease Is Associated with Enhanced Inflammation

2021

Background: Diabetic vasculopathy plays an important role in the pathophysiology of coronary artery disease (CAD) with oxidative stress as a strong mediator. This study aims to elucidate the underlying pathomechanisms of diabetic cardiac vasculopathy leading to coronary disease with an emphasis on the role of oxidative stress. Therefore, novel insights into antioxidant pathways might contribute to new strategies in the treatment and prevention of diabetic CAD. Methods: In 20 patients with insulin-dependent or non-insulin dependent diabetes mellitus (IDDM/NIDDM) and 39 non-diabetic (CTR) patients, myocardial markers of oxidative stress, vasoactive proteins, endothelial nitric oxide synthase …

medicine.medical_specialtyHealth Toxicology and MutagenesisInflammationmedicine.disease_causeArticleCoronary artery diseaseEnosDiabetes mellitusInternal medicinemedicineHumansoxidative stressbiologybusiness.industrydyslipidemiaPublic Health Environmental and Occupational HealthRLipid metabolismLipid Metabolismmedicine.diseasebiology.organism_classificationHeme oxygenaseEndocrinologynutritionDiabetes Mellitus Type 2inflammationdiabetes mellitusMedicinemedicine.symptombusinesschronic diseaseDiabetic AngiopathiesOxidative stressDyslipidemiacoronary artery diseaseInternational Journal of Environmental Research and Public Health
researchProduct

Comparison of Direct and Indirect Antioxidant Effects of Linagliptin (BI 1356, ONDERO) with other Gliptins – Evidence for Anti-inflammatory Propertie…

2010

Antioxidantbusiness.industrymedicine.drug_classPhysiology (medical)medicine.medical_treatmentMedicinePharmacologybusinessLinagliptinBiochemistryAnti-inflammatorymedicine.drugFree Radical Biology and Medicine
researchProduct

The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model b…

2014

Objective In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress. Methods Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was adminis…

Blood GlucoseMalemedicine.medical_treatmentReceptor for Advanced Glycation End Productslcsh:MedicineGene ExpressionType 2 diabetesmedicine.disease_causeVascular MedicineGlucosidesMedicine and Health SciencesMedicineInsulinEndothelial dysfunctionReceptors Immunologiclcsh:ScienceMultidisciplinaryType 1 DiabetesCytokinesInflammation Mediatorsmedicine.drugSignal TransductionResearch Articlemedicine.medical_specialtyCardiologyBlood sugarStreptozocinCardiovascular PharmacologyDiabetes Mellitus ExperimentalDiabetes ComplicationsInternal medicineDiabetes mellitusEmpagliflozinDiabetes MellitusAnimalsRNA MessengerVascular DiseasesBenzhydryl CompoundsSodium-Glucose Transporter 2 InhibitorsPharmacologybusiness.industryInsulinlcsh:RHemodynamicsStreptozotocinmedicine.diseaseRatsOxidative StressEndocrinologyGlucoseMetabolic Disorderslcsh:QbusinessOxidative stressDiabetic AngiopathiesPloS one
researchProduct

New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease

2019

The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupli…

0301 basic medicineAdipose tissueReview030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeendothelial dysfunctionEpigenesis Geneticlcsh:Chemistry0302 clinical medicineEnoscardiovascular diseaseeNOS uncouplingoxidative stressEndothelial dysfunctionlcsh:QH301-705.5Spectroscopyenvironmental stressorsbiologyGeneral MedicineComputer Science Applicationsmedicine.anatomical_structureCardiovascular Diseasesmedicine.symptomOxidation-ReductionCell signalingEndotheliumNitric Oxide Synthase Type IIIInflammationModels BiologicalCatalysisInorganic Chemistry03 medical and health scienceslife style/behavioral health risk factorsmedicineAnimalsHumansPhysical and Theoretical ChemistryMolecular Biologybusiness.industryOrganic Chemistrymedicine.diseasebiology.organism_classification030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Socioeconomic FactorsinflammationSoluble guanylyl cyclasebusinessOxidative stressInternational Journal of Molecular Sciences
researchProduct

Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats.

2006

Nebivolol is a β 1 -receptor antagonist with vasodilator and antioxidant properties. Because the vascular NADPH oxidase is an important superoxide source, we studied the effect of nebivolol on endothelial function and NADPH oxidase activity and expression in the well-characterized model of angiotensin II–induced hypertension. Angiotensin II infusion (1 mg/kg per day for 7 days) caused endothelial dysfunction in male Wistar rats and increased vascular superoxide as detected by lucigenin-derived chemiluminescence, as well as dihydroethidine staining. Vascular NADPH oxidase activity, as well as expression at the mRNA and protein level, were markedly upregulated, as well as NOS III uncoupled, …

Malerac1 GTP-Binding Proteinmedicine.medical_specialtyLuminescenceEndotheliumNitric Oxide Synthase Type IIIAdrenergic beta-AntagonistsNitric OxideFluorescenceCell LineNebivololchemistry.chemical_compoundHemoglobinsSuperoxidesInternal medicineInternal MedicinemedicineAnimalsHumansBenzopyransRats WistarCyclic GMPNitritesOxidase testNADPH oxidaseLuminescent AgentsbiologyChemistrySuperoxideAngiotensin IIMyocardiumNADPH OxidasesDicarbethoxydihydrocollidinePhosphoproteinsAngiotensin IINebivololRatsNitric oxide synthasemedicine.anatomical_structureEndocrinologyEthanolaminesNOX1biology.proteinAcridinesBlood VesselsLuminolEndothelium Vascularmedicine.drugSignal TransductionHypertension (Dallas, Tex. : 1979)
researchProduct

Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension

2017

Multicellular interactions of platelets, leukocytes, and the blood vessel wall support coagulation and precipitate arterial and venous thrombosis. High levels of angiotensin II cause arterial hypertension by a complex vascular inflammatory pathway that requires leukocyte recruitment and reactive oxygen species production and is followed by vascular dysfunction. We delineate a previously undescribed, proinflammatory coagulation-vascular circuit that is a major regulator of vascular tone, blood pressure, and endothelial function. In mice with angiotensin II-induced hypertension, tissue factor was up-regulated, as was thrombin-dependent endothelial cell vascular cellular adhesion molecule 1 ex…

Blood PlateletsMale0301 basic medicinemedicine.medical_specialtyMacrophage-1 AntigenVascular Cell Adhesion Molecule-1Blood Pressure030204 cardiovascular system & hematologyThromboplastinMice03 medical and health sciencesTissue factor0302 clinical medicineThrombinInternal medicinemedicineAnimalsHumansPlateletRats WistarEndothelial dysfunctionBlood CoagulationFactor XIAgedMice Knockoutbusiness.industryAngiotensin IIThrombinGeneral MedicineMiddle AgedOligonucleotides Antisensemedicine.diseaseAngiotensin IIMice Inbred C57BL030104 developmental biologyEndocrinologyBlood pressuremedicine.anatomical_structurePlatelet Glycoprotein GPIb-IX ComplexPathophysiology of hypertensionHypertensionFemalebusinessmedicine.drugBlood vesselScience Translational Medicine
researchProduct

Number of nitrate groups determines reactivity and potency of organic nitrates: a proof of concept study in ALDH-2−/− mice

2007

Background and purpose: Mitochondrial aldehyde dehydrogenase (ALDH-2) has been shown to provide a pathway for bioactivation of organic nitrates and to be prone to desensitization in response to highly potent, but not to less potent, nitrates. We therefore sought to support the hypothesis that bioactivation by ALDH-2 critically depends on the number of nitrate groups within the nitrovasodilator. Experimental approach: Nitrates with one (PEMN), two (PEDN; GDN), three (PETriN; glyceryl trinitrate, GTN) and four (pentaerithrityl tetranitrate, PETN) nitrate groups were investigated. Vasodilatory potency was measured in isometric tension studies using isolated aortic segments of wild type (WT) an…

Pharmacologychemistry.chemical_classificationbiologyAldehyde dehydrogenasePentaerythritol tetranitrateDehydrogenaseNitric oxidechemistry.chemical_compoundEnzymeBiochemistrychemistrymedicinebiology.proteinStructure–activity relationshipPotencyNitrovasodilatormedicine.drugBritish Journal of Pharmacology
researchProduct

Comparison of DPP‐4 inhibition versus GLP‐1 analogue supplementation on survival and vascular complications in experimental sepsis (145.2)

2014

Background: Dipeptidyl peptidase [DPP]-4 inhibitors are a new class of drug for the treatment of hyperglycemia and recent studies revealed anti-inflammatory effects of these gliptins in experimenta...

DrugPathologymedicine.medical_specialtyendocrine system diseasesbusiness.industrymedia_common.quotation_subjectnutritional and metabolic diseasesPharmacologymedicine.diseaseBiochemistryDipeptidyl peptidaseSepsisGeneticsmedicineGLP-1 AnaloguebusinessMolecular BiologyDipeptidyl peptidase-4Biotechnologymedia_commonThe FASEB Journal
researchProduct

Unique Features of the Low Molecular Weight Probe Salicylaldehyde in the Detection of Nanomolar Peroxynitrite Fluxes

2012

chemistry.chemical_compoundchemistrySalicylaldehydePhysiology (medical)Inorganic chemistryBiochemistryPeroxynitriteFree Radical Biology and Medicine
researchProduct

Vascular Dysfunction in Streptozotocin-Induced Experimental Diabetes Strictly Depends on Insulin Deficiency

2010

<i>Objective:</i> In previous studies we and others have shown that streptozotocin (STZ)-induced diabetes in rats is associated with vascular oxidative stress and dysfunction. In the present study, we sought to determine whether vascular dysfunction and oxidative stress strictly depend on insulin deficiency. <i>Methods:</i> The effects of insulin (2.5 U/day s.c., 2 weeks) therapy on vascular disorders in STZ-induced (60 mg/kg i.v., 8 weeks) diabetes mellitus (type I) were studied in Wistar rats. The contribution of NADPH oxidase to overall oxidative stress was investigated by in vivo (30 mg/kg/day s.c., 4 days) and in vitro treatment with apocynin. <i>Results:&…

Blood GlucoseMalemedicine.medical_specialtyNitric Oxide Synthase Type IIIEndotheliumPhysiologymedicine.medical_treatmentmedicine.disease_causeStreptozocinDiabetes Mellitus Experimentalchemistry.chemical_compoundInternal medicineDiabetes mellitusmedicineAnimalsInsulinRats WistarEndothelial dysfunctionNADPH oxidasebiologybusiness.industryMyocardiumInsulinAcetophenonesNADPH OxidasesStreptozotocinmedicine.diseaseRatsOxidative StressNG-Nitroarginine Methyl EsterEndocrinologymedicine.anatomical_structurechemistryApocyninbiology.proteinEndothelium VascularCardiology and Cardiovascular MedicinebusinessDiabetic AngiopathiesOxidative stressmedicine.drugJournal of Vascular Research
researchProduct

Monitoring White Blood Cell Mitochondrial Aldehyde Dehydrogenase Activity: Implications for Nitrate Therapy in Humans

2009

Recent animal data suggest that reduced lipoic acid (LA) prevents oxidative inhibition of the nitrate bioactivating enzyme, the mitochondrial aldehyde dehydrogenase (ALDH-2), and that pentaerythritol tetranitrate (PETN) does not induce nitrate tolerance because of its intrinsic antioxidative properties, thereby preserving ALDH-2 activity. We sought to determine whether ALDH-2 activity in circulating white blood cells (WBCs) can be used to monitor nitrate tolerance and whether LA can prevent nitroglycerin tachyphylaxis in humans. Eight healthy male volunteers received, in randomized order, a single dose of glyceryl trinitrate (GTN; 0.8 mg), PETN (80 mg), or GTN plus LA (600 mg) orally. GTN (…

MaleMyocardial IschemiaAldehyde dehydrogenasePentaerythritol tetranitrateVasodilationTachyphylaxisPharmacologymedicine.disease_causeMitochondria Heartchemistry.chemical_compoundAnimal dataWhite blood cellLeukocytesmedicineAnimalsHumansRats WistarPharmacologyNitratesbiologyAldehyde DehydrogenaseRatsEnzyme ActivationVasodilationLipoic acidmedicine.anatomical_structurechemistrybiology.proteinMolecular MedicineOxidative stresscirculatory and respiratory physiologyJournal of Pharmacology and Experimental Therapeutics
researchProduct

In vitro and in vivo characterization of a new organic nitrate hybrid drug covalently bound to pioglitazone.

2014

<b><i>Background/Aims:</i></b> Organic nitrates represent a group of nitrovasodilators that are clinically used for the treatment of ischemic heart disease. The new compound CLC-3000 is an aminoethyl nitrate (AEN) derivative of pioglitazone, a thiazolidinedione antidiabetic agent combining the peroxisome proliferator-activated receptor γ agonist activity of pioglitazone with the NO-donating activity of the nitrate moiety. <b><i>Methods:</i></b> In vitro and in vivo characterization was performed by isometric tension recording, platelet function, bleeding time and detection of oxidative stress. <b><i>Results:</i></…

DrugBlood PlateletsMaleBleeding TimePlatelet Aggregationmedia_common.quotation_subjectVasodilator Agentsmedicine.disease_causeMitochondria Heartchemistry.chemical_compoundNitrateFibrinolytic AgentsIn vivomedicineAnimalsHumansHypoglycemic AgentsRats WistarAortamedia_commonPharmacologyNitratesPioglitazoneChemistryGeneral MedicineReactive Nitrogen SpeciesIn vitroOrganic nitratesMice Inbred C57BLVasodilationBiochemistryCovalent bondVasoconstrictionThiazolidinedionesReactive Oxygen SpeciesPioglitazoneOxidative stressmedicine.drugPharmacology
researchProduct

Endothelial Dysfunction in Tristetraprolin-deficient Mice Is Not Caused by Enhanced Tumor Necrosis Factor-α Expression

2014

Cardiovascular events are important co-morbidities in patients with chronic inflammatory diseases like rheumatoid arthritis. Tristetraprolin (TTP) regulates pro-inflammatory processes through mRNA destabilization and therefore TTP-deficient mice (TTP(-/-) mice) develop a chronic inflammation resembling human rheumatoid arthritis. We used this mouse model to evaluate molecular signaling pathways contributing to the enhanced atherosclerotic risk in chronic inflammatory diseases. In the aorta of TTP(-/-) mice we observed elevated mRNA expression of known TTP targets like tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1α, as well as of other pro-atherosclerotic mediators, l…

MaleVasculitismedicine.medical_specialtyMRNA destabilizationRNA StabilityTristetraprolinInflammationBiochemistryNitric oxideMicechemistry.chemical_compoundOrgan Culture TechniquesTristetraprolinhemic and lymphatic diseasesInternal medicinemedicineAnimalsEndothelial dysfunctionMolecular BiologyAortaReactive nitrogen speciesMice KnockoutMembrane GlycoproteinsNADPH oxidasebiologyTumor Necrosis Factor-alphaEndothelial CellsNADPH OxidasesMolecular Bases of DiseaseCell Biologyrespiratory systemAtherosclerosismedicine.diseaseReactive Nitrogen SpeciesMice Inbred C57BLOxidative StressCholesterolEndocrinologychemistryMice Inbred DBAChronic DiseaseNADPH Oxidase 2biology.proteinFemaleTumor necrosis factor alphamedicine.symptomReactive Oxygen SpeciesJournal of Biological Chemistry
researchProduct

Time‐dependent induction of vascular oxidative stress, inflammation, endothelial dysfunction and high blood pressure by aircraft noise exposure in mi…

2020

medicine.medical_specialtybusiness.industryInflammationmedicine.diseasemedicine.disease_causeBiochemistryBlood pressureEndocrinologyInternal medicineGeneticsmedicineEndothelial dysfunctionmedicine.symptombusinessMolecular BiologyOxidative stressBiotechnologyThe FASEB Journal
researchProduct

Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1—evidence for direct and …

2009

Heme oxygenase-1 (HO-1) is highly protective in various pathophysiological states such as cardiovascular and neurodegenerative diseases. HO-1-derived bilirubin is an efficient scavenger of reactive oxygen and nitrogen species (RONS). It remains to determine whether conversion of biliverdin to bilirubin is an essential step for HO-1-conferred protection of endothelial cells. RONS scavenging activities of biliverdin versus bilirubin were assessed by different RONS generating systems and detection techniques. We also silenced the biliverdin reductase (BVR) or HO-1 gene in cultured primary human endothelial cells (HUVECs) and measured the effect on RONS formation upon stimulation with lipopolys…

LipopolysaccharidesOxidoreductases Acting on CH-CH Group DonorsUmbilical VeinsXanthine OxidaseNeutrophilsBilirubinNitrosationModels BiologicalAntioxidantschemistry.chemical_compoundPeroxynitrous AcidLeukocytespolycyclic compoundsHumansGene SilencingMolecular BiologyHemeReactive nitrogen speciesRespiratory BurstBiliverdinAngiotensin IIBiliverdineBiliverdin reductaseEndothelial CellsBilirubinFree Radical ScavengersAngiotensin IIMitochondriaEndothelial stem cellHeme oxygenasechemistryBiochemistryCytoprotectionGene Knockdown TechniquesTyrosineReactive Oxygen SpeciesCardiology and Cardiovascular MedicineHeme Oxygenase-1Journal of Molecular and Cellular Cardiology
researchProduct

Normalization of endothelial dysfunction and vascular oxidative stress by chronic atorvastatin treatment in a rat model of streptozotocin-induced dia…

2006

PharmacologyNormalization (statistics)medicine.medical_specialtyPhysiologybusiness.industryAtorvastatinRat modelStreptozotocinmedicine.disease_causemedicine.diseaseDiabetes mellitus type iEndocrinologyInternal medicinemedicineMolecular MedicineEndothelial dysfunctionbusinessOxidative stressmedicine.drugVascular Pharmacology
researchProduct

Anti-oxidative effects in response to pentaerithrityl tetranitrate (PETN) treatment are mediated by heme oxygenase-1 and ferritin induction and preve…

2006

PharmacologyPentaerithrityl tetranitratebiologyPhysiologyChemistryCross-toleranceFerritinHeme oxygenasechemistry.chemical_compoundNitrateBiochemistryIn vivobiology.proteinMolecular MedicineAnti oxidativeVascular Pharmacology
researchProduct

Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-glutathionylation of endothelial nitric oxide synth…

2011

Continuous administration of nitroglycerin (GTN) causes tolerance and endothelial dysfunction by inducing reactive oxygen species (ROS) production from various enzymatic sources, such as mitochondria, NADPH oxidase, and an uncoupled endothelial nitric oxide synthase (eNOS). In the present study, we tested the effects of type 1 angiotensin (AT(1))-receptor blockade with telmisartan on GTN-induced endothelial dysfunction in particular on eNOS phosphorylation and S-glutathionylation sites and the eNOS cofactor synthesizing enzyme GTP-cyclohydrolase I.Wistar rats were treated with telmisartan (2.7 or 8 mg/kg per day PO for 10 days) and with GTN (50 mg/kg per day SC for 3 days). Aortic eNOS phos…

MaleNitric Oxide Synthase Type IIIPhysiologyVasodilator AgentsPharmacologyBenzoatesCell LineNitroglycerinmedicineAnimalsHumansTelmisartanEnzyme InhibitorsPhosphorylationRats WistarS-GlutathionylationEndothelial dysfunctionGTP CyclohydrolaseBeneficial effectsNitroglycerinPharmacologyAngiotensin II receptor type 1Dose-Response Relationship DrugEndothelial nitric oxide synthaseChemistryEndothelial CellsDrug ToleranceAldehyde Dehydrogenasemedicine.diseaseGlutathioneMitochondriaRatsVasodilationOxidative StressTetrahydrofolate DehydrogenaseMolecular MedicinePhosphorylationBenzimidazolesEndothelium VascularTelmisartanReactive Oxygen SpeciesAngiotensin II Type 1 Receptor BlockersProtein Processing Post-Translationalmedicine.drugVascular Pharmacology
researchProduct

Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dys…

2008

AimsImbalance between pro- and antioxidant species (e.g. during aging) plays a crucial role for vascular function and is associated with oxidative gene regulation and modification. Vascular aging is associated with progressive deterioration of vascular homeostasis leading to reduced relaxation, hypertrophy, and a higher risk of thrombotic events. These effects can be explained by a reduction in free bioavailable nitric oxide that is inactivated by an age-dependent increase in superoxide formation. In the present study, mitochondria as a source of reactive oxygen species (ROS) and the contribution of manganese superoxide dismutase (MnSOD, SOD-2) and aldehyde dehydrogenase (ALDH-2) were inves…

Mitochondrial ROSMaleAgingPhysiologyVasodilator AgentsMitochondrionVascular dysfunctionmedicine.disease_causeMitochondria HeartMuscle Smooth Vascularchemistry.chemical_compoundMiceEndothelial dysfunctionAortachemistry.chemical_classificationMice KnockoutbiologySuperoxideAldehyde Dehydrogenase MitochondrialAge FactorsVasodilationBiochemistryCardiology and Cardiovascular MedicineMitochondrial aldehyde dehydrogenasemedicine.medical_specialty8-oxodGOxidative phosphorylationDNA MitochondrialSuperoxide dismutaseManganese superoxide dismutaseddc:570Physiology (medical)Internal medicinemedicineAnimalsReactive oxygen speciesDose-Response Relationship DrugSuperoxide DismutaseMitochondrial oxidative stressOriginal ArticlesAldehyde Dehydrogenasemedicine.diseaseMice Inbred C57BLOxidative StressEndocrinologychemistrybiology.proteinEndothelium VascularReactive Oxygen SpeciesOxidative stressDNA DamageCardiovascular research
researchProduct

Development of an Analytical Assay for Electrochemical Detection and Quantification of Protein-Bound 3-Nitrotyrosine in Biological Samples and Compar…

2020

Reactive oxygen and nitrogen species (RONS) cause oxidative damage, which is associated with endothelial dysfunction and cardiovascular disease, but may also contribute to redox signaling. Therefore, their precise detection is important for the evaluation of disease mechanisms. Here, we compared three different methods for the detection of 3-nitrotyrosine (3-NT), a marker of nitro-oxidative stress, in biological samples. Nitrated proteins were generated by incubation with peroxynitrite or 3-morpholino sydnonimine (Sin-1) and subjected to total hydrolysis using pronase, a mixture of different proteases. The 3-NT was then separated by high performance liquid chromatography (HPLC) and quantifi…

0301 basic medicinePhysiologyClinical BiochemistryDot blotmitochondrial superoxidePronase030204 cardiovascular system & hematologymedicine.disease_causeBiochemistryHigh-performance liquid chromatographyArticleperoxynitritePeroxynitrite03 medical and health sciences0302 clinical medicineProtein-bound 3-nitrotyrosinemedicineoxidative stressBovine serum albuminMolecular Biologychemistry.chemical_classificationDetection limitReactive oxygen speciesChromatographyHPLC with electrochemical detectionbiologylcsh:RM1-950Cell Biology3. Good health030104 developmental biologylcsh:Therapeutics. PharmacologychemistryOxidative stressbiology.proteinprotein-bound 3-nitrotyrosineOxidative stressEx vivoMitochondrial superoxide
researchProduct

AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats.

2008

Several enzymatic sources of reactive oxygen species (ROS) were described as potential reasons of eNOS uncoupling in diabetes mellitus. In the present study, we investigated the effects of AT1-receptor blockade with chronic telmisartan (25 mg/kg/day, 6.5 weeks) therapy on expression of the BH4-synthesizing enzyme GTP-cyclohydrolase I (GCH-I), eNOS uncoupling, and endothelial dysfunction in streptozotocin (STZ, 60 mg/kg iv, 7 weeks)-induced diabetes mellitus (type I). Telmisartan therapy did not modify blood glucose and body weight. Aortas from diabetic animals had vascular dysfunction as revealed by isometric tension studies (acetylcholine and nitroglycerin potency). Vascular and cardiac RO…

Blood GlucoseMalemedicine.medical_specialtyNitric Oxide Synthase Type IIImedicine.disease_causeBiochemistryBenzoatesReceptor Angiotensin Type 1chemistry.chemical_compoundEnosPhysiology (medical)Internal medicinemedicineDiabetes MellitusAnimalsTelmisartanEndothelial dysfunctionRats WistarXanthine oxidaseGTP CyclohydrolaseNADPH oxidasebiologySuperoxideBody WeightNADPH Oxidasesmedicine.diseaseStreptozotocinbiology.organism_classificationMitochondriaRatsUp-RegulationEnzyme ActivationOxidative StressEndocrinologychemistrybiology.proteinBenzimidazolesTelmisartanAngiotensin II Type 1 Receptor BlockersOxidative stressmedicine.drugFree radical biologymedicine
researchProduct

Short‐term e‐cigarette vapor exposure causes vascular oxidative stress and dysfunction ‐ evidence for a close connection to brain damage and a key ro…

2020

NADPH oxidasebiologyChemistryBrain damagemedicine.disease_causeBiochemistryCell biologyConnection (mathematics)Geneticsmedicinebiology.proteinmedicine.symptomMolecular BiologyOxidative stressNOxBiotechnologyThe FASEB Journal
researchProduct

Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice

2006

Abstract Background Chronic therapy with nitroglycerin (GTN) results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS). According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT) and heterozygous manganese superoxide dismutase mice (Mn-SOD+/-) with ethanolic solution of GTN (12.5 μg/min/kg for 4 d). For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 1…

Mitochondrial ROSMaleHeterozygotelcsh:Diseases of the circulatory (Cardiovascular) systemVasodilator AgentsAldehyde dehydrogenaseOxidative phosphorylationMitochondrionPharmacologyIn Vitro Techniquesmedicine.disease_causeDrug Administration ScheduleMitochondria HeartCell LineSuperoxide dismutaseMiceNitroglycerinmedicineAnimalsHumansPentaerythritol TetranitrateRNA MessengerRats WistarHeart metabolismAortachemistry.chemical_classificationReactive oxygen speciesbiologybusiness.industrySuperoxide DismutaseAldehyde Dehydrogenase MitochondrialBilirubinDrug ToleranceFree Radical ScavengersAldehyde DehydrogenaseAcetylcholineRatsVasodilationOxidative Stresschemistrylcsh:RC666-701Anesthesiabiology.proteinCardiology and Cardiovascular MedicinebusinessReactive Oxygen SpeciesOxidative stressHeme Oxygenase-1Research ArticleBMC Cardiovascular Disorders
researchProduct

Glutathione Peroxidase-1 Deficiency Potentiates Dysregulatory Modifications of Endothelial Nitric Oxide Synthase and Vascular Dysfunction in Aging

2014

Recently, we demonstrated that gene ablation of mitochondrial manganese superoxide dismutase and aldehyde dehydrogenase-2 markedly contributed to age-related vascular dysfunction and mitochondrial oxidative stress. The present study has sought to investigate the extent of vascular dysfunction and oxidant formation in glutathione peroxidase-1–deficient ( GPx-1 −/− ) mice during the aging process with special emphasis on dysregulation (uncoupling) of the endothelial NO synthase. GPx-1 −/− mice on a C57 black 6 (C57BL/6) background at 2, 6, and 12 months of age were used. Vascular function was significantly impaired in 12-month-old GPx-1 −/− -mice as compared with age-matched controls. Oxidan…

MaleAgingmedicine.medical_specialtyGPX1Nitric Oxide Synthase Type IIIBiologymedicine.disease_causeMicechemistry.chemical_compoundGlutathione Peroxidase GPX1Internal medicineLeukocytesInternal MedicinemedicineAnimalsHumansPhosphorylationEndothelial dysfunctionProtein kinase ACells CulturedAgedMice Knockoutchemistry.chemical_classificationGlutathione PeroxidaseGlutathione peroxidaseEndothelial CellsNitric Oxide Synthase Type IIIGlutathioneOxidantsmedicine.diseaseMice Inbred C57BLOxidative StressEndocrinologychemistryImmunologyPhosphorylationEndothelium VascularOxidative stressHypertension
researchProduct

Exacerbation of adverse cardiovascular effects of aircraft noise in an animal model of arterial hypertension

2020

Arterial hypertension is the most important risk factor for the development of cardiovascular disease. Recently, aircraft noise has been shown to be associated with elevated blood pressure, endothelial dysfunction, and oxidative stress. Here, we investigated the potential exacerbated cardiovascular effects of aircraft noise in combination with experimental arterial hypertension. C57BL/6J mice were infused with 0.5 mg/kg/d of angiotensin II for 7 days, exposed to aircraft noise for 7 days at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A), or subjected to both stressors. Noise and angiotensin II increased blood pressure, endothelial dysfunction, oxidati…

0301 basic medicineAircraftmedicine.medical_treatmentClinical BiochemistryBlood Pressure1308 Clinical Biochemistrymedicine.disease_causeBiochemistryMice0302 clinical medicineMedicineEndothelial dysfunctionlcsh:QH301-705.5lcsh:R5-920NADPH oxidasebiologyCytokineHypertensionmedicine.symptomlcsh:Medicine (General)Arterial hypertensionmedicine.medical_specialtyArticles from the Special Issue on Impact of environmental pollution and stress on redox signaling and oxidative stress pathways; Edited by Thomas Münzel and Andreas Daiber10208 Institute of Neuropathology610 Medicine & healthInflammation03 medical and health sciencesInternal medicineEnvironmental noise exposureAnimalsNeuroinflammationInflammationbusiness.industryOrganic ChemistryEndothelial functionmedicine.diseaseAngiotensin IIMice Inbred C57BLOxidative Stress030104 developmental biologyEndocrinologyBlood pressurelcsh:Biology (General)Vascular oxidative stressbiology.protein570 Life sciences; biologyEndothelium Vascularbusiness030217 neurology & neurosurgeryOxidative stress1605 Organic ChemistryRedox Biology
researchProduct

The Oxidative Stress Concept of Nitrate Tolerance and the Antioxidant Properties of Hydralazine

2005

The hemodynamic and anti-ischemic effects of nitroglycerin (NTG) are rapidly blunted as a result of the development of nitrate tolerance. With initiation of NTG therapy, it is possible to detect neurohormonal activation and intravascular volume expansion. These so-called pseudotolerance mechanisms may compromise the vasodilatory effects of NTG. Long-term nitrate treatment also is associated with decreased vascular responsiveness caused by changes in intrinsic mechanisms of the tolerant vasculature itself. According to the oxidative stress concept, increased vascular superoxide (O 2 − ) production and an increased sensitivity to vasoconstrictors secondary to activation of protein kinase C co…

Malemedicine.medical_specialtyMaximum Tolerated Dosegenetic structuresDrug ResistanceMyocardial IschemiaPharmacologyCoronary Angiographymedicine.disease_causeSeverity of Illness IndexDrug Administration ScheduleNitric oxideNitroglycerinchemistry.chemical_compoundInternal medicinemedicineAnimalsHumansDrug Interactionschemistry.chemical_classificationClinical Trials as TopicReactive oxygen speciesDose-Response Relationship Drugbusiness.industryHydralazineHydralazineLong-Term Careeye diseasesDisease Models AnimalOxidative StresschemistryHeart Function TestsExercise TestCardiologyFemaleVascular ResistanceEndothelium Vascularsense organsSodium nitroprussideCardiology and Cardiovascular MedicineSoluble guanylyl cyclasebusinessNicotinamide adenine dinucleotide phosphatePeroxynitriteOxidative stressmedicine.drugThe American Journal of Cardiology
researchProduct

Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Anim…

2014

Aims: Oxidative stress is involved in the development of cardiovascular disease. There is a growing body of evidence for a crosstalk between different enzymatic sources of oxidative stress. With the present study, we sought to determine the underlying crosstalk mechanisms, the role of the mitochondrial permeability transition pore (mPTP), and its link to endothelial dysfunction. Results: NADPH oxidase (Nox) activation (oxidative burst and translocation of cytosolic Nox subunits) was observed in response to mitochondrial reactive oxygen species (mtROS) formation in human leukocytes. In vitro, mtROS-induced Nox activation was prevented by inhibitors of the mPTP, protein kinase C, tyrosine kin…

PhysiologyNeutrophilsClinical BiochemistryBiologyMitochondrionmedicine.disease_causeBiochemistryModels BiologicalSuperoxide dismutaseCyclophilinsMiceForum Original Research CommunicationsMitochondria (A. Daiber Ed.)medicineLeukocytesAnimalsHumansMolecular BiologyGeneral Environmental ScienceRespiratory Burstchemistry.chemical_classificationMice KnockoutReactive oxygen speciesNADPH oxidaseSuperoxide DismutaseAngiotensin IINADPH OxidasesBiological TransportCell BiologyRespiratory burstMitochondriaPeroxidesEnzyme ActivationCrosstalk (biology)Oxidative StressMitochondrial permeability transition poreBiochemistrychemistrybiology.proteincardiovascular systemGeneral Earth and Planetary SciencesReactive Oxygen SpeciesOxidation-ReductionOxidative stressCyclophilin D
researchProduct

Cyclooxygenase 2-selective and nonselective nonsteroidal anti-inflammatory drugs induce oxidative stress by up-regulating vascular NADPH oxidases.

2008

Cyclooxygenase 2-selective inhibitors (coxibs) and nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) are associated with an increase in cardiovascular events. The current study was designed to test the effect of coxibs and nonselective NSAIDs on vascular superoxide and nitric oxide (NO) production. mRNA expression of endothelial NO synthase (eNOS) and of the vascular NADPH oxidases was studied in spontaneously hypertensive rats (SHR) and in human endothelial cells. The expression of Nox1, Nox2, Nox4, and p22phox was increased markedly by the nonselective NSAIDs diclofenac or naproxen and moderately by rofecoxib or celecoxib in the aorta and heart of SHR. The up-regulation of NADPH …

AdultMalePharmacologychemistry.chemical_compoundEnosRats Inbred SHRAnimalsHumansPharmacologyNADPH oxidasebiologyCyclooxygenase 2 InhibitorsNitrotyrosineAnti-Inflammatory Agents Non-SteroidalNOX4NADPH Oxidasesbiology.organism_classificationRatsUp-RegulationOxidative StresschemistryCyclooxygenase 2NOX1Apocynincardiovascular systembiology.proteinMolecular MedicineFemaleP22phoxEndothelium VascularPeroxynitriteThe Journal of pharmacology and experimental therapeutics
researchProduct

Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice

2016

Background and purpose Excessive inflammation in sepsis causes microvascular thrombosis and thrombocytopenia associated with organ dysfunction and high mortality. The present studies aimed to investigate whether inhibition of dipeptidyl peptidase-4 (DPP-4) and supplementation with glucagon-like peptide-1 (GLP-1) receptor agonists improved endotoxaemia-associated microvascular thrombosis via immunomodulatory effects. Experimental approach Endotoxaemia was induced in C57BL/6J mice by a single injection of LPS (17.5 mg kg-1 for survival and 10 mg kg-1 for all other studies). For survival studies, treatment was started 6 h after LPS injection. For all other studies, drugs were injected 48 h bef…

0301 basic medicinePharmacologymedicine.medical_specialtyLiraglutidebusiness.industryInflammation030204 cardiovascular system & hematologymedicine.diseasemedicine.disease_causeSystemic inflammation03 medical and health sciences030104 developmental biology0302 clinical medicineEndocrinologyInternal medicinemedicinePlateletPlatelet activationEndothelial dysfunctionmedicine.symptombusinessReceptorOxidative stressmedicine.drugBritish Journal of Pharmacology
researchProduct

The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats

2017

Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, β-cell function, inflammation, oxidative stress and endothel…

Male0301 basic medicineendocrine system diseasesDiabetic CardiomyopathiesFPS-ZM1 RAGE inhibitorClinical BiochemistryAorta ThoracicRAGE receptor for AGEICAM-1 intercellular adhesion molecule-1ECL enhanced chemiluminescence030204 cardiovascular system & hematologyDPP-4 dipeptidyl peptidase-4medicine.disease_causeTNF-α tumor necrosis factor-αBiochemistryeNOS endothelial •NO synthase (type 3)0302 clinical medicineGlucosidesecSOD extracellular superoxide dismutaseInsulin-Secreting CellsCCL-2 see MCP-1HyperlipidemiaHyperinsulinemiaGTN glyceryl trinitrate (nitroglycerin)IFN-γ interferon-γDHE dihydroethidineEndothelial dysfunctionEndothelial dysfunctionIL-6 interleukin-6lcsh:QH301-705.5HO-1 heme oxygenase-1lcsh:R5-920ICAM-1NG normoglycemiaDiabetesNox catalytic subunit of NADPH oxidaseSGLT2 inhibitorβ-cell contentL-012 8-amino-5-chloro-7-phenylpyrido[34-d]pyridazine-14-(2H3H)dione sodium saltChIP chromatin immunoprecipitationC-Reactive ProteinCRP C-reactive proteinAGE advanced glycation end productsHbA1c glycohemoglobinlcsh:Medicine (General)Research PaperZucker diabetic fatty ratsmedicine.medical_specialtyDMSO dimethylsulfoxideMCP-1 monocyte-chemoattractant-protein-1qRT-PCR quantitative reverse transcription polymerase chain reactionZDF Zucker diabetic fatty (rat)Low-grade inflammation03 medical and health sciencesROS reactive oxygen speciesSodium-Glucose Transporter 2Physiology (medical)Internal medicineDiabetes mellitusPKC protein kinase CEmpagliflozinmedicineAnimalsHypoglycemic AgentsBenzhydryl CompoundsCOX2 cyclooxygenase-2SGLT2i SGLT2 inhibitorSodium-Glucose Transporter 2 InhibitorsGlycated HemoglobinACh acetylcholinebusiness.industryOrganic Chemistrynutritional and metabolic diseasesType 2 Diabetes Mellitusmedicine.diseaseH2K9me2 histone3 lysine9 dimethylationRatsRats ZuckerDHFR dihydrofolate reductaseSGLT2 sodium-glucose co-transporter-2Oxidative StresssGC soluable guanylyl cyclaseGlucose030104 developmental biologyEndocrinologylcsh:Biology (General)ALDH-2 mitochondrial aldehyde dehydrogenaseEndothelium VascularAGE/RAGE signalingHG hyperglycemiabusinessOxidative stressRedox Biology
researchProduct

11,12-EET Stimulates the Association of BK Channel α and β1 Subunits in Mitochondria to Induce Pulmonary Vasoconstriction

2012

In the systemic circulation, 11,12-epoxyeicosatrienoic acid (11,12-EET) elicits nitric oxide (NO)- and prostacyclin-independent vascular relaxation, partially through the activation of large conductance Ca(2+)-activated potassium (BK) channels. However, in the lung 11,12-EET contributes to hypoxia-induced pulmonary vasoconstriction. Since pulmonary artery smooth muscle cells also express BK channels, we assessed the consequences of BKβ(1) subunit deletion on pulmonary responsiveness to 11,12-EET as well as to acute hypoxia. In buffer-perfused mouse lungs, hypoxia increased pulmonary artery pressure and this was significantly enhanced in the presence of NO synthase (NOS) and cyclooxygenase (…

BK channelAnatomy and PhysiologyLarge-Conductance Calcium-Activated Potassium Channel beta SubunitsRespiratory Systemlcsh:MedicineCardiovascularCardiovascular SystemBiochemistryIon ChannelsMembrane PotentialsMice81114-Eicosatrienoic AcidHypoxic pulmonary vasoconstrictionHypoxiaLarge-Conductance Calcium-Activated Potassium Channel alpha Subunitslcsh:ScienceLungEnergy-Producing OrganellesEpoxide HydrolasesMembrane Potential MitochondrialMembrane potentialMultidisciplinarybiologyChemistryDepolarizationHyperpolarization (biology)IberiotoxinMitochondriaBiochemistryCirculatory Physiologycardiovascular systemMedicinelipids (amino acids peptides and proteins)medicine.symptomResearch ArticleCell Physiologymedicine.medical_specialtyPulmonary ArteryBioenergeticsCardiovascular PharmacologyInternal medicinemedicineAnimalsHumansArterial Pressureddc:610Protein InteractionsBiologylcsh:RProteinsCalcium-activated potassium channelMice Inbred C57BLHEK293 CellsEndocrinologyVasoconstrictionbiology.proteinlcsh:QGene DeletionVasoconstrictionPLoS ONE
researchProduct

Betulinic Acid Protects from Ischemia-Reperfusion Injury in the Mouse Retina

2021

Ischemia/reperfusion (I/R) events are involved in the pathophysiology of numerous ocular diseases. The purpose of this study was to test the hypothesis that betulinic acid protects from I/R injury in the mouse retina. Ocular ischemia was induced in mice by increasing intraocular pressure (IOP) to 110 mm Hg for 45 min, while the fellow eye served as a control. One group of mice received betulinic acid (50 mg/kg/day p.o. once daily) and the other group received the vehicle solution only. Eight days after the I/R event, the animals were killed and the retinal wholemounts and optic nerve cross-sections were prepared and stained with cresyl blue or toluidine blue, respectively, to count cells in…

Malemedicine.medical_specialtyretinagenetic structuresQH301-705.5ischemia-reperfusion injuryarteriolesVideo microscopyProtective AgentsArticlechemistry.chemical_compoundMicebetulinic acidInternal medicineBetulinic acidmedicineAnimalsBiology (General)AxonGanglion cell layerreactive oxygen speciesRetinaAnti-Inflammatory Agents Non-SteroidalRetinalGeneral Medicinemedicine.diseaseeye diseasesMice Inbred C57BLmedicine.anatomical_structureEndocrinologychemistryReperfusion InjuryOptic nervesense organsPentacyclic TriterpenesReperfusion injuryCells
researchProduct

Pentaerithrityl tetranitrate improves angiotensin II induced vascular dysfunction via induction of heme oxygenase-1

2010

The organic nitrate pentaerythritol tetranitrate is devoid of nitrate tolerance, which has been attributed to the induction of the antioxidant enzyme heme oxygenase (HO)-1. With the present study, we tested whether chronic treatment with pentaerythritol tetranitrate can improve angiotensin II–induced vascular oxidative stress and dysfunction. In contrast to isosorbide-5 mononitrate (75 mg/kg per day for 7 days), treatment with pentaerythritol tetranitrate (15 mg/kg per day for 7 days) improved the impaired endothelial and smooth muscle function and normalized vascular and cardiac reactive oxygen species production (mitochondria, NADPH oxidase activity, and uncoupled endothelial NO synthase)…

medicine.medical_specialtyAntioxidantNitric Oxide Synthase Type IIImedicine.medical_treatmentVasodilator AgentsBlotting WesternFluorescent Antibody TechniquePentaerythritol tetranitratemedicine.disease_causePentaerythritolArticlechemistry.chemical_compoundInternal medicineRats Inbred SHRInternal MedicinemedicineAnimalsPentaerythritol TetranitrateEndothelial dysfunctionchemistry.chemical_classificationReactive oxygen speciesAnalysis of VarianceAngiotensin IImedicine.diseaseAngiotensin IIMitochondriaRatsHeme oxygenaseOxidative StressEndocrinologychemistryHeminEndothelium VascularReactive Oxygen SpeciesOxidative stressHeme Oxygenase-1
researchProduct

Oxidative Inhibition of the Mitochondrial Aldehyde Dehydrogenase Promotes Nitroglycerin Tolerance in Human Blood Vessels

2007

Objectives We tested the hypothesis of whether an inhibition of the nitroglycerin (GTN) bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) contributes to GTN tolerance in human blood vessels. Background The hemodynamic effects of GTN are rapidly blunted by the development of tolerance, a phenomenon associated with increased formation of reactive oxygen species (ROS). Recent studies suggest that ROS-induced inhibition of ALDH-2 accounts for tolerance in animal models. Methods Segments of surgically removed arteria mammaria and vena saphena from patients undergoing coronary bypass surgery were used to examine the vascular responsiveness to GTN and the endothelium-dependent vas…

Malemedicine.medical_specialtyNitric Oxide Synthase Type IIIVasodilator AgentsMyocardial InfarctionAldehyde dehydrogenaseVasodilationPharmacologyDrug Administration ScheduleTissue Culture TechniquesNitroglycerinIn vivoEnosmedicineHumansSaphenous VeinEndothelial dysfunctionMammary ArteriesAgedbiologybusiness.industryAldehyde Dehydrogenase MitochondrialDrug ToleranceAldehyde Dehydrogenasemedicine.diseasebiology.organism_classificationAcetylcholineSurgeryOxidative Stressmedicine.anatomical_structureCirculatory systemcardiovascular systembiology.proteinFemaleAnimal studiesbusinessCardiology and Cardiovascular Medicinecirculatory and respiratory physiologyBlood vesselJournal of the American College of Cardiology
researchProduct

Enhanced Age-Dependent ENOS Dysfunction and - Uncoupling in Glutathione Peroxidase-1-Deficient Mice

2012

medicine.medical_specialtyGPX1EndocrinologybiologyChemistryEnosPhysiology (medical)Internal medicineDeficient mousemedicineAge dependentbiology.organism_classificationBiochemistryFree Radical Biology and Medicine
researchProduct

Regulation of Human Mitochondrial Aldehyde Dehydrogenase (ALDH-2) Activity by Electrophiles in Vitro

2011

Recently, mitochondrial aldehyde dehydrogenase (ALDH-2) was reported to reduce ischemic damage in an experimental myocardial infarction model. ALDH-2 activity is redox-sensitive. Therefore, we here compared effects of various electrophiles (organic nitrates, reactive fatty acid metabolites, or oxidants) on the activity of ALDH-2 with special emphasis on organic nitrate-induced inactivation of the enzyme, the biochemical correlate of nitrate tolerance. Recombinant human ALDH-2 was overexpressed in Escherichia coli; activity was determined with an HPLC-based assay, and reactive oxygen and nitrogen species formation was determined by chemiluminescence, fluorescence, protein tyrosine nitration,…

Thioredoxin reductaseAldehyde dehydrogenaseNitric Oxidemedicine.disease_causeBiochemistryNitric oxideMitochondrial Proteinschemistry.chemical_compoundmedicineHumansEnzyme InhibitorsMolecular BiologybiologyAldehyde Dehydrogenase MitochondrialMolecular Bases of DiseaseHydrogen PeroxideCell BiologyAldehyde DehydrogenaseRecombinant ProteinsEnzyme assaychemistryBiochemistryNitrosationbiology.proteinThioredoxinPeroxynitriteOxidative stressJournal of Biological Chemistry
researchProduct

Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with con…

2005

The hemodynamic and anti-ischemic effects of nitroglycerin (GTN) are rapidly blunted as a result of the development of nitrate tolerance. Hydralazine has been shown to prevent tolerance in experimental and clinical studies, all of which may be at least in part secondary to antioxidant properties of this compound. The antioxidant effects of hydralazine were tested in cell free systems, cultured smooth muscle cells, isolated mitochondria, and isolated vessels. Inhibitory effects on the formation of superoxide and/or peroxynitrite formation were tested using lucigenin and L-012 enhanced chemiluminescence as well as DHE-fluorescence. The peroxynitrite scavenging properties were also assessed by…

Malemedicine.medical_specialtyAntioxidantmedicine.medical_treatmentBiophysicsMitochondrionBiochemistryAntioxidantsMitochondrial ProteinsNitroglycerinchemistry.chemical_compoundPeroxynitrous AcidInternal medicinemedicineAnimalsHumansLucigeninRats WistarMolecular BiologyHeart FailureSuperoxideAldehyde Dehydrogenase MitochondrialMicrofilament ProteinsDrug ToleranceFree Radical ScavengersCell BiologyAldehyde DehydrogenaseHydralazineHydralazinePhosphoproteinsPrognosismedicine.diseaseReactive Nitrogen SpeciesMitochondriaRatsOxidative StressEndocrinologychemistryHeart failureIsosorbide dinitrateReactive Oxygen SpeciesCell Adhesion MoleculesPeroxynitritemedicine.drugBiochemical and Biophysical Research Communications
researchProduct

Comparison of Linagliptin, Sitagliptin and Liraglutide Effects on Survival and Vascular Complications in Experimental Sepsis

2013

medicine.medical_specialtyLiraglutidebusiness.industryUrologyLinagliptinmedicine.diseaseBiochemistrySepsisEndocrinologySitagliptinInternal medicinePhysiology (medical)medicinebusinessmedicine.drugFree Radical Biology and Medicine
researchProduct

A new class of organic nitrates: investigations on bioactivation, tolerance and cross-tolerance phenomena

2009

Background and purpose:  The chronic use of organic nitrates is limited by serious side effects including oxidative stress, nitrate tolerance and/or endothelial dysfunction. The side effects and potency of nitroglycerine depend on mitochondrial aldehyde dehydrogenase (ALDH-2). We sought to determine whether this concept can be extended to a new class of organic nitrates with amino moieties (aminoalkyl nitrates). Experimental approach:  Vasodilator potency of the organic nitrates, in vitro tolerance and in vivo tolerance (after continuous infusion for 3 days) were assessed in wild-type and ALDH-2 knockout mice by isometric tension studies. Mitochondrial oxidative stress was analysed by L-012…

PharmacologyChemistryMetabolismMitochondrionPharmacologymedicine.disease_causeNitric oxideCross-tolerancechemistry.chemical_compoundBiochemistryIn vivomedicinePotencyAcetylcholineOxidative stressmedicine.drugBritish Journal of Pharmacology
researchProduct

Stimulatory TSH-Receptor Antibodies and Oxidative Stress in Graves Disease

2018

CONTEXT: We hypothesized that TSH-receptor (TSHR) stimulating antibodies (TSAbs) are involved in oxidative stress mechanisms in patients with Graves disease (GD). METHODS: Nicotinamide adenine dinucleotide phosphate oxidase, isoform 2 (NOX2); oxidative parameters; and oxidative burst were measured in serum, urine, and whole blood from patients with GD and control subjects. Superoxide production was investigated in human embryonic kidney (HEK)-293 cells stably overexpressing the TSHR. Lipid peroxidation was determined by immunodot-blot analysis for protein-bound 4-hydroxy-2-nonenal (4-HNE) in human primary thyrocytes and HEK-293–TSHR cells. RESULTS: Serum NOX2 levels were markedly higher in …

AdultMale0301 basic medicineendocrine systemmedicine.medical_specialtyendocrine system diseasesEndocrinology Diabetes and MetabolismGraves' diseaseClinical Biochemistry030209 endocrinology & metabolismContext (language use)medicine.disease_causeBiochemistryLipid peroxidation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineEndocrinologyInternal medicinemedicineHumansEuthyroidClinical Research ArticlesTriiodothyroninebusiness.industryBiochemistry (medical)Toxic nodular goiterReceptors ThyrotropinMiddle AgedPrognosismedicine.diseaseGraves DiseaseRespiratory burstOxidative StressHEK293 Cells030104 developmental biologyEndocrinologychemistryFemaleLipid PeroxidationbusinessBiomarkershormones hormone substitutes and hormone antagonistsOxidative stressFollow-Up StudiesImmunoglobulins Thyroid-StimulatingThe Journal of Clinical Endocrinology & Metabolism
researchProduct

Noise-Induced Vascular Dysfunction, Oxidative Stress, and Inflammation Are Improved by Pharmacological Modulation of the NRF2/HO-1 Axis

2021

Vascular oxidative stress, inflammation, and subsequent endothelial dysfunction are consequences of traditional cardiovascular risk factors, all of which contribute to cardiovascular disease. Environmental stressors, such as traffic noise and air pollution, may also facilitate the development and progression of cardiovascular and metabolic diseases. In our previous studies, we investigated the influence of aircraft noise exposure on molecular mechanisms, identifying oxidative stress and inflammation as central players in mediating vascular function. The present study investigates the role of heme oxygenase-1 (HO-1) as an antioxidant response preventing vascular consequences following exposu…

0301 basic medicinePhysiologyClinical BiochemistryInflammationDiseaseRM1-950030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeenvironmental risk factorsBiochemistryArticleendothelial dysfunctionNRF203 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineoxidative stressInducerEndothelial dysfunctionMolecular BiologyDimethyl fumaratebusiness.industryaircraft noise exposureheme oxygenase-1Cell Biologymedicine.diseaseNoise030104 developmental biologychemistryinflammationTherapeutics. Pharmacologymedicine.symptombusinessOxidative stressHeminAntioxidants
researchProduct

Abstract 18540: Heme Oxygenase 1 Activity and Expression Suppresses a Proinflammatory Phenotype in Monocytes and Correlates With Endothelial Function…

2014

Background: Heme oxygenase-1 (HO-1) confers protection to the vasculature and suppresses inflammatory properties of monocytes and macrophages. It is unclear how HO-1 activity and expression determine the extent of vascular dysfunction in mice and humans. Methods and results: Decreasing HO activity was parallelled by decreasing aortic HO-1, eNOS and phospho-eNOS (ser1177) protein expression in HO-1 deficient mice, whereas aortic expression of nox2 showed a stepwise increase in HO-1+/- and HO-1-/- mice as compared to HO-1+/+ controls. Aortic superoxide formation increased depending on the extent of HO-1 deficiency and was blunted by the PKC inhibitor chelerythrine, indicating activation of t…

medicine.medical_specialtyNADPH oxidasebiologybusiness.industryMonocyteCD14biology.organism_classificationAngiotensin IIProinflammatory cytokineHeme oxygenaseEndocrinologymedicine.anatomical_structureIntegrin alpha MEnosPhysiology (medical)Internal medicineImmunologybiology.proteinmedicineCardiology and Cardiovascular MedicinebusinessCirculation
researchProduct

Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice

2021

Epidemiological studies showed that traffic noise has a dose-dependent association with increased cardiovascular morbidity and mortality. Whether microvascular dysfunction contributes significantly to the cardiovascular health effects by noise exposure remains to be established. The connection of inflammation and immune cell interaction with microvascular damage and functional impairment is also not well characterized. Male C57BL/6J mice or gp91phox−/y mice with genetic deletion of the phagocytic NADPH oxidase catalytic subunit (gp91phox or NOX-2) were used at the age of 8 weeks, randomly instrumented with dorsal skinfold chambers and exposed or not exposed to aircraft noise for 4 days. Pro…

MaleProteomicsmedicine.medical_specialtyMedicine (General)AircraftQH301-705.5Clinical BiochemistryPhagocytic NADPH oxidaseInflammationVideo microscopymedicine.disease_causeBiochemistryMiceR5-920Internal medicinemedicineLeukocytesAnimalsEndothelial dysfunctionMicorvascular dysfunctionAircraft noise exposureBiology (General)NADPH oxidasebiologybusiness.industryDorsal skinfold modelOrganic ChemistryNADPH OxidasesBlood flowmedicine.diseasePathophysiologyMice Inbred C57BLRed blood cellOxidative StressEndocrinologymedicine.anatomical_structurePlasma proteomeMicrovascular dysfunctionbiology.proteinmedicine.symptombusinessDoreal skinfold modelOxidative stressInflammatory phenotypeResearch PaperRedox Biology
researchProduct

Corrigendum to “European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS…

2018

The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics b…

0301 basic medicineSocieties ScientificRedox signalingInternational CooperationClinical BiochemistryNanotechnologyReview ArticleBiologyPublic administrationBiochemistryAntioxidantsArticle03 medical and health sciencesmedia_common.cataloged_instanceAnimalsHumansCost actionEuropean UnionEuropean unionMolecular Biologylcsh:QH301-705.5media_commonFunding AgencyRedox therapeuticslcsh:R5-920Organic ChemistryReactive nitrogen species030104 developmental biologyWork (electrical)lcsh:Biology (General)Oxidative stressReactive Oxygen Specieslcsh:Medicine (General)Oxidation-ReductionSignal TransductionRedox Biology
researchProduct

Effects of Sodium dependent Glucose Transporter 2 (SGLT2) Inhibition with Empagliflozin on Oxidative Stress and Endothelial Dysfunction in STZ-Induce…

2013

medicine.medical_specialtyChemistryDiabetic ratmedicine.diseasemedicine.disease_causeBiochemistryEndocrinologyGLUCOSE TRANSPORTER 2Physiology (medical)Internal medicinemedicineEmpagliflozinEndothelial dysfunctionSodium dependentOxidative stressFree Radical Biology and Medicine
researchProduct

Effects of nitroglycerin or pentaerithrityl tetranitrate treatment on the gene expression in rat hearts: evidence for cardiotoxic and cardioprotectiv…

2009

Nitroglycerin (NTG) and pentaerithrityl tetranitrate (PETN) are organic nitrates used in the treatment of angina pectoris, myocardial infarction, and congestive heart failure. Recent data show marked differences in the effects of NTG and PETN on the generation of reactive oxygen species. These differences are attributed to different effects of NTG and PETN on the expression of antioxidative proteins like the heme oxygenase-I. To analyze the expressional effects of NTG and PETN in a more comprehensive manner we performed whole genome expression profiling experiments using cardiac total RNA from NTG- or PETN-treated rats and DNA microarrays containing oligonucleotides representing 27,044 rat…

Malemedicine.medical_specialtyPentaerithrityl tetranitrateCardiotonic Agentsgenetic structuresPhysiologyBiologyCardiotoxinsAnginaNitroglycerinInternal medicineGene expressionGeneticsmedicineAnimalsPentaerythritol TetranitrateMyocardial infarctionRats WistarNitroglycerinDNA PrimersOligonucleotide Array Sequence AnalysisReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingMyocardiummedicine.diseaseMolecular biologyeye diseasesOrganic nitratesRatsGene Expression RegulationHeart failureCardiologysense organsmedicine.drugPhysiological genomics
researchProduct

Development and validation of an analytical assay for electrochemical detection and quantification of protein‐bound 3‐nitrotyrosine in biological sam…

2020

3-nitrotyrosineChromatographybiologyChemistryGeneticsbiology.proteinElectrochemical detectionAntibodyMolecular BiologyBiochemistryBiotechnologyThe FASEB Journal
researchProduct

Vascular Dysfunction in Nitroglycerininduced Nitrate Tolerance is Improved by Telmisartan Therapy — Suppression of the RAAS and PKC Pathway

2010

medicine.medical_specialtybusiness.industryPharmacologyBiochemistrychemistry.chemical_compoundEndocrinologyNitratechemistryPhysiology (medical)Internal medicinemedicineTelmisartanbusinessProtein kinase Cmedicine.drugFree Radical Biology and Medicine
researchProduct

The Role of DNA Damage in the Pathogenesis of Nitrate Tolerance

2013

Pathogenesischemistry.chemical_compoundNitratechemistryBiochemistryDNA damagePhysiology (medical)BiochemistryFree Radical Biology and Medicine
researchProduct

Chronic Therapy With Isosorbide-5-Mononitrate Causes Endothelial Dysfunction, Oxidative Stress and a Marked Increase in Vascular Endothelin-1 Express…

2011

Aims Isosorbide-5-mononitrate (ISMN) is one of the most frequently used compounds in the treatment of coronary artery disease predominantly in the USA. However, ISMN was reported to induce endothelial dysfunction, which was corrected by vitamin C pointing to a crucial role of reactive oxygen species (ROS) in causing this phenomenon. We sought to elucidate the mechanism how ISMN causes endothelial dysfunction and oxidative stress in vascular tissue. Methods and results Male Wistar rats ( n = 69 in total) were treated with ISMN (75 mg/kg/day) or placebo for 7 days. Endothelin (ET) expression was determined by immunohistochemistry in aortic sections. Isosorbide-5-mononitrate infusion caused si…

Malemedicine.medical_specialtyNitric Oxide Synthase Type IIIIsosorbide DinitratePharmacologymedicine.disease_causeBiochemistryMicechemistry.chemical_compoundSuperoxidesEnosInternal medicinePhysiology (medical)medicineAnimalsNitric Oxide DonorsEnzyme InhibitorsRats WistarEndothelial dysfunctionCyclic GMPAortaMice KnockoutNADPH oxidaseEndothelin-1biologybusiness.industryNADPH Oxidasesmedicine.diseasebiology.organism_classificationEndothelin 1BosentanRatsNitric oxide synthaseEndothelial stem cellOxidative StressNG-Nitroarginine Methyl EsterEndocrinologychemistryApocyninbiology.proteinEndothelium VascularCardiology and Cardiovascular MedicineEndothelin receptorbusinessOxidative stressSignal Transductionmedicine.drugFree Radical Biology and Medicine
researchProduct

Vascular Dysfunction in Experimental Diabetes Is Improved by Pentaerithrityl Tetranitrate but Not Isosorbide-5-Mononitrate Therapy

2011

OBJECTIVE Diabetes is associated with vascular oxidative stress, activation of NADPH oxidase, and uncoupling of nitric oxide (NO) synthase (endothelial NO synthase [eNOS]). Pentaerithrityl tetranitrate (PETN) is an organic nitrate with potent antioxidant properties via induction of heme oxygenase-1 (HO-1). We tested whether treatment with PETN improves vascular dysfunction in the setting of experimental diabetes. RESEARCH DESIGN AND METHODS After induction of hyperglycemia by streptozotocin (STZ) injection (60 mg/kg i.v.), PETN (15 mg/kg/day p.o.) or isosorbide-5-mononitrate (ISMN; 75 mg/kg/day p.o.) was fed to Wistar rats for 7 weeks. Oxidative stress was assessed by optical methods and o…

Blood GlucoseMalemedicine.medical_specialtyXanthine OxidaseEndocrinology Diabetes and MetabolismVasodilator AgentsOxidative phosphorylationIsosorbide Dinitratemedicine.disease_causeWeight GainNitric oxideDiabetes Mellitus Experimentalchemistry.chemical_compoundEnosInternal medicineInternal MedicinemedicineAnimalsPentaerythritol TetranitrateGene SilencingEndothelial dysfunctionRats WistarXanthine oxidaseGTP CyclohydrolaseNADPH oxidasebiologyNADPH Oxidasesmedicine.diseasebiology.organism_classificationStreptozotocinPharmacology and TherapeuticsRatsOxidative StressEndocrinologychemistryVasoconstrictionbiology.proteinEndothelium VascularReactive Oxygen SpeciesOxidative stressHeme Oxygenase-1medicine.drugDiabetes
researchProduct

Crucial role for Nox2 and sleep deprivation in aircraft noise-induced vascular and cerebral oxidative stress, inflammation, and gene regulation

2018

Abstract Aims Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results C57BL/6j and Nox2 −/− (gp91phox −/−) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effec…

0301 basic medicinemedicine.medical_specialtyEndotheliumAircraft10208 Institute of NeuropathologyInflammation610 Medicine & health030204 cardiovascular system & hematologySystemic inflammationmedicine.disease_cause2705 Cardiology and Cardiovascular Medicine03 medical and health sciences0302 clinical medicineBasic ScienceVascular BiologyInternal medicineeNOS uncouplingmedicineHumansEndothelial dysfunctionEndothelial dysfunctionInflammationSystemic inflammationbusiness.industryEnvironmental stressorCerebral redox balancemedicine.diseaseEnvironmental stressorSleep deprivationNoiseSleep deprivationOxidative Stress030104 developmental biologymedicine.anatomical_structureEndocrinologyNADPH oxidase-derived oxidative stress570 Life sciences; biologymedicine.symptombusinessNoiseCardiology and Cardiovascular MedicineOxidative stressNoise exposure
researchProduct

In vivo analysis of noise dependent activation of white blood cells and microvascular dysfunction in mice

2021

This article contains supporting information on data collection for the research article entitled “Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice” by Eckrich et al. We found that noise-induced stress triggered microvascular dysfunction via involvement of innate immune-derived reactive oxygen species. In this article, we present the instrumentation of mice with dorsal skinfold chambers for in vivo microscopic imaging of blood flow, interaction of leukocytes with the vascular wall (also by fluorescent labelling of blood cells) and vessel diameter. In addition, we explain the preparation of cerebral arterioles for measurement of…

chemistry.chemical_classificationReactive oxygen speciesPathologymedicine.medical_specialtyScienceQClinical BiochemistryIn vivo analysisVideo microscopyBlood flowMethod ArticleIn vivo fluorescence microscopy and cerebral arteriole cannulation to assess noise induced changes in activation of white blood cells and microvascular dysfunctionIn vitroCerebral arterioles cannulationMedical Laboratory TechnologyDorsal skinfold chamberchemistryIn vivoFluorescent labeling of blood cellsVideo microscopyMicroscopic imagingmedicineResearch articleMethodsX
researchProduct

Comparison of direct and indirect antioxidant effects of linagliptin with other gliptins — Evidence for antioxidant and antiinflammatory properties o…

2012

PharmacologyAntioxidantPhysiologyChemistrymedicine.medical_treatmentmedicineMolecular MedicinePharmacologyLinagliptinmedicine.drugVascular Pharmacology
researchProduct

Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus

2007

Abstract Objective HMG-CoA reductase inhibitors have been shown to upregulate GTP cyclohydrolase I (GTPCH-I), the key enzyme for tetrahydrobiopterin de novo synthesis and to normalize tetrahydrobiopterin levels in hyperglycemic endothelial cells. We sought to determine whether in vivo treatment with the HMG-CoA reductase inhibitor atorvastatin is able to upregulate the GTPCH-I, to recouple eNOS and to normalize endothelial dysfunction in an experimental model of diabetes mellitus. Methods and results In male Wistar rats, diabetes was induced by streptozotocin (STZ, 60mg/kg). In STZ rats, atorvastatin feeding (20mg/kg/d, 7 weeks), normalized vascular dysfunction as analyzed by isometric tens…

Malemedicine.medical_specialtyNitric Oxide Synthase Type IIIGTP cyclohydrolase INitric Oxide Synthase Type IIReductaseArticleDiabetes Mellitus ExperimentalCytochrome P-450 Enzyme SystemEnosInternal medicineAtorvastatinmedicineAnimalsNADH NADPH OxidoreductasesPyrrolesRats WistarEndothelial dysfunctionGTP CyclohydrolaseNADPH oxidasebiologyStem CellsBody WeightMicrofilament ProteinsTetrahydrobiopterinPhosphoproteinsmedicine.diseasebiology.organism_classificationBiopterinRatsEnzyme ActivationIntramolecular OxidoreductasesVasodilationNitric oxide synthaseDisease Models AnimalOxidative StressTetrahydrofolate DehydrogenaseDiabetes Mellitus Type 1EndocrinologyHeptanoic AcidsHMG-CoA reductaseNADPH Oxidase 1biology.proteinEndothelium VascularHydroxymethylglutaryl-CoA Reductase InhibitorsCardiology and Cardiovascular MedicineCell Adhesion MoleculesDiabetic Angiopathiesmedicine.drugAtherosclerosis
researchProduct

Inhibition of Rac1 GTPase Decreases Vascular Oxidative Stress, Improves Endothelial Function, and Attenuates Atherosclerosis Development in Mice

2021

Aims: Oxidative stress and inflammation contribute to atherogenesis. Rac1 GTPase regulates pro-oxidant NADPH oxidase activity, reactive oxygen species (ROS) formation, actin cytoskeleton organization and monocyte adhesion. We investigated the vascular effects of pharmacological inhibition of Rac1 GTPase in mice.Methods and Results: We treated wild-type and apolipoprotein E-deficient (ApoE−/−) mice with Clostridium sordellii lethal toxin (LT), a Rac1 inhibitor, and assessed vascular oxidative stress, expression and activity of involved proteins, endothelial function, macrophage infiltration, and atherosclerosis development. LT-treated wild-type mice displayed decreased vascular NADPH oxidase…

RHOAInflammationVascular permeabilityfree radicalsPharmacologyCardiovascular Medicinemedicine.disease_causeActin cytoskeleton organizationendothelial functionmedicineoxidative stressDiseases of the circulatory (Cardiovascular) systemddc:610Endothelial dysfunctionOriginal Researchchemistry.chemical_classificationReactive oxygen speciesNADPH oxidaseGTPasesbiologymedicine.diseasechemistryatherosclerosis endothelial function oxidative stress free radicals Rac1 GTPasesRC666-701biology.proteinmedicine.symptomatherosclerosisCardiology and Cardiovascular MedicineOxidative stressRac1Frontiers in Cardiovascular Medicine
researchProduct

Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or nadph oxidase—implicatio…

2020

Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-m…

0301 basic medicineAntioxidantmedicine.medical_treatmentReview030204 cardiovascular system & hematologyMitochondrionmedicine.disease_causelcsh:Chemistry0302 clinical medicineEndothelial dysfunctionEndothelial dysfunctionlcsh:QH301-705.5SpectroscopyNADPH oxidasebiologyChemistryGeneral MedicineReactive Nitrogen SpeciesComputer Science ApplicationsCell biologyMitochondriaCardiovascular DiseasesDisease Progressionmedicine.symptomInflammationENOS uncouplingOxidative phosphorylationEndothelial dysfunction; ENOS uncoupling; Kindling radicals; Low-grade inflammation; Mitochondria; NADPH oxidase; Oxidative stress; Redox cross talkLow-grade inflammationCatalysisRedox cross talkInorganic Chemistry03 medical and health sciencesmedicineDiabetes MellitusAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyInflammationNADPH oxidaseOrganic ChemistryNADPH Oxidasesmedicine.diseaseAngiotensin II030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Oxidative stressbiology.proteinKindling radicalsReactive Oxygen SpeciesOxidative stress
researchProduct

Taking up the cudgels for the traditional reactive oxygen and nitrogen species detection assays and their use in the cardiovascular system

2017

Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) confer redox regulation of essential cellular functions (e.g. differentiation, proliferation, migration, apoptosis), initiate and catalyze adaptive stress responses. In contrast, excessive formation of RONS caused by impaired break-down by cellular antioxidant systems and/or insufficient repair of the resulting oxidative damage of biomolecules may lead to appreciable impairment of cellular function and in the worst case to cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, the knowledge of the severity of oxidative stress and tissue specific localization is of great biological …

0301 basic medicineProgrammed cell deathRedox signalingClinical BiochemistrySevere diseaseReview ArticleBiologymedicine.disease_causeCardiovascular SystemBiochemistry03 medical and health sciencesPhysiology (medical)medicineDihydroethidium oxidative fluorescence microtopographyAnimalsHumanslcsh:QH301-705.5Organismchemistry.chemical_classificationlcsh:R5-920Reactive oxygen speciesFluorescence and chemiluminescence-based assaysOrganic ChemistrySpecies detectionNADPH OxidasesPhenotypeReactive Nitrogen SpeciesOxidative Stress030104 developmental biologylcsh:Biology (General)chemistryBiochemistryL-012-enhanced chemiluminescenceLuminescent MeasurementsLucigenin-enhanced chemiluminescencelcsh:Medicine (General)Reactive Oxygen SpeciesNeuroscienceOxidation-ReductionFunction (biology)Oxidative stressFree Radical Biology and Medicine
researchProduct

Traffic-related environmental risk factors and their impact on oxidative stress and cardiovascular health

2020

Abstract The adverse effects of the environment on health are increasingly recognized. The WHO estimates that noise accounts for 1 million annually lost healthy life years in Western Europe due to increased incidence of hypertension, heart failure, myocardial infarction, and stroke. An even more severe health impact was reported for air pollution (e.g., PM2.5) accounting for up to 800,000 annual excess deaths in Europe. Adverse effects of air pollution are mechanistically better characterized, but there is still a great need to understand the pathophysiology of air pollution-induced cardiovascular disease, especially the potential synergistic effects together with noise. With the present bo…

business.industryHealthy Life YearsDiseasemedicine.diseasemedicine.disease_causeEnvironmental healthHeart failureHeart rateMedicineMyocardial infarctionbusinessAdverse effectStrokeOxidative stress
researchProduct

Nitroglycerin-Induced Endothelial Dysfunction and Tolerance Involve Adverse Phosphorylation and S -Glutathionylation of Endothelial Nitric Oxide Synt…

2011

Objective— Continuous administration of nitroglycerin (GTN) causes tolerance and endothelial dysfunction by inducing reactive oxygen species (ROS) production from various enzymatic sources, such as mitochondria, NADPH oxidase, and an uncoupled endothelial nitric oxide synthase (eNOS). In the present study, we tested the effects of type 1 angiotensin (AT 1 )-receptor blockade with telmisartan on GTN-induced endothelial dysfunction in particular on eNOS phosphorylation and S -glutathionylation sites and the eNOS cofactor synthesizing enzyme GTP–cyclohydrolase I. Methods and Results— Wistar rats were treated with telmisartan (2.7 or 8 mg/kg per day PO for 10 days) and with GTN (50 mg/kg per d…

chemistry.chemical_classificationmedicine.medical_specialtyReactive oxygen speciesNADPH oxidasebiologyEndotheliummedicine.diseasemedicine.disease_causebiology.organism_classificationNitric oxide synthasemedicine.anatomical_structureEndocrinologychemistryEnosInternal medicinemedicinebiology.proteinTelmisartanEndothelial dysfunctionCardiology and Cardiovascular MedicineOxidative stressmedicine.drugArteriosclerosis, Thrombosis, and Vascular Biology
researchProduct

GLP-1 Analog Liraglutide Improves Vascular Function in Polymicrobial Sepsis by Reduction of Oxidative Stress and Inflammation

2021

Sepsis causes high mortality in the setting of septic shock. LEADER and other trials revealed cardioprotective and anti-inflammatory properties of glucagon-like peptide-1 (GLP-1) analogs like liraglutide (Lira). We previously demonstrated improved survival in lipopolysaccharide (LPS)-induced endotoxemia by inhibition of GLP-1 degradation. Here we investigate the effects of Lira in the polymicrobial sepsis model of cecal ligation and puncture (CLP). C57BL/6J mice were intraperitoneally injected with Lira (200 µg/kg/d

0301 basic medicineLipopolysaccharidePhysiologyglucagon-like peptide-1 (GLP-1)Clinical Biochemistryperitoneal and polymicrobial sepsisInflammationRM1-950030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeBiochemistryArticleendothelial dysfunctionSepsis03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineoxidative stressvascular inflammationEndothelial dysfunctionInterleukin 6Molecular Biologyliraglutidebiologybusiness.industrySeptic shockCell Biologybacterial infections and mycosesmedicine.diseasececal ligation and puncture (CLP)Nitric oxide synthase030104 developmental biologychemistrybiology.proteinTherapeutics. Pharmacologymedicine.symptombusinessOxidative stressincretinsAntioxidants
researchProduct

Sirolimus-Induced Vascular Dysfunction

2008

Objectives This study sought to analyze mechanisms that mediate vascular dysfunction induced by sirolimus. Background Despite excellent antirestenotic capacity, sirolimus-eluting stents have been found to trigger coronary endothelial dysfunction and impaired re-endothelialization. Methods To mimic the continuous sirolimus exposure of a stented vessel, Wistar rats underwent drug infusion with an osmotic pump for 7 days. Results Sirolimus treatment caused a marked degree of endothelial dysfunction as well as a desensitization of the vasculature to the endothelium-independent vasodilator nitroglycerin. Also, sirolimus stimulated intense transmural superoxide formation as detected by dihydroeth…

medicine.medical_specialtyEndotheliumVasodilationNitric oxidechemistry.chemical_compoundInternal medicinemedicinecardiovascular diseasesEndothelial dysfunctionNADPH oxidaseNicotinamidebiologybusiness.industrySuperoxideequipment and suppliesmedicine.diseasesurgical procedures operativemedicine.anatomical_structureEndocrinologychemistrySirolimuscardiovascular systembiology.proteinCardiology and Cardiovascular Medicinebusinessmedicine.drugJournal of the American College of Cardiology
researchProduct

Noise‐induced vascular dysfunction, oxidative stress and inflammationare improved by pharmacological heme oxygenase‐1 induction

2020

Heme oxygenaseChemistryNoise inducedGeneticsmedicinePharmacologymedicine.disease_causeMolecular BiologyBiochemistryOxidative stressBiotechnologyThe FASEB Journal
researchProduct

NOX2ko Mice Show Largely Increased Expression of a Mutated NOX2 mRNA Encoding an Inactive NOX2 Protein

2020

Background: The superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2 or gp91phox, the phagocytic isoform) was reported as a major source of oxidative stress in various human diseases. Genetic deletion is widely used to study the impact of NOX2-derived reactive oxygen species (ROS) on disease development and progression in various animal models. Here, we investigate why NOX2 knockout mice show no NOX2 activity but express NOX2 mRNA and protein. Methods and Results: Oxidative burst (NOX2-dependent formation of ROS) was measured by L-012-based chemiluminescence and was largely absent in whole blood of NOX2 knockout mice. Protein expression was still de…

0301 basic medicineGene isoformPhysiologyClinical Biochemistrynext generation sequencing (NGS)030204 cardiovascular system & hematologymedicine.disease_causeBiochemistryArticlenicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) knockout mice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineWestern blotmedicineMolecular BiologyGeneMessenger RNAmedicine.diagnostic_testurogenital systemCell BiologyMolecular biologyRespiratory burst030104 developmental biologychemistryKnockout mousecardiovascular systemoxidative stress related diseasetruncated and inactive mutanthormones hormone substitutes and hormone antagonistsOxidative stressNicotinamide adenine dinucleotide phosphatecirculatory and respiratory physiologyAntioxidants
researchProduct

Resveratrol Reverses Endothelial Nitric-Oxide Synthase Uncoupling in Apolipoprotein E Knockout Mice

2010

A crucial cause of the decreased bioactivity of nitric oxide (NO) in cardiovascular diseases is the uncoupling of the endothelial NO synthase (eNOS) caused by the oxidative stress-mediated deficiency of the NOS cofactor tetrahydrobiopterin (BH(4)). The reversal of eNOS uncoupling might represent a novel therapeutic approach. The treatment of apolipoprotein E knockout (ApoE-KO) mice with resveratrol resulted in the up-regulation of superoxide dismutase (SOD) isoforms (SOD1-SOD3), glutathione peroxidase 1 (GPx1), and catalase and the down-regulation of NADPH oxidases NOX2 and NOX4 in the hearts of ApoE-KO mice. This was associated with reductions in superoxide, 3-nitrotyrosine, and malondiald…

Malemedicine.medical_specialtyNitric Oxide Synthase Type IIISOD3SOD2ResveratrolAntioxidantsSuperoxide dismutaseMicechemistry.chemical_compoundApolipoproteins ESuperoxidesEnosMalondialdehydeInternal medicineStilbenesmedicineAnimalsGTP CyclohydrolaseMice KnockoutPharmacologychemistry.chemical_classificationReactive oxygen speciesbiologyReverse Transcriptase Polymerase Chain ReactionSuperoxide DismutaseChemistrySuperoxideMyocardiumTetrahydrobiopterinbiology.organism_classificationBiopterinIsoenzymesOxidative StressEndocrinologyBiochemistryResveratrolbiology.proteinRNATyrosineMolecular Medicinemedicine.drugJournal of Pharmacology and Experimental Therapeutics
researchProduct

Molecular Mechanisms of the Crosstalk Between Mitochondrial and NADPH Oxidase Derived Reactive Oxygen Species in White Blood Cells - Implications for…

2012

Pharmacologychemistry.chemical_classificationCrosstalk (biology)Reactive oxygen speciesNADPH oxidasebiologyBiochemistrychemistryPhysiologybiology.proteinMolecular MedicineCell biology
researchProduct

Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications.

2013

The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase and results in loss of activity which contributes to endothelial dysfunction. We here report the sensitive peroxynitrite-dependent nitration of an over-expressed and partially purified human prostacyclin synthase (3.3 μM) with an EC50 value of 5 μM. Microsomal thiols in these preparations effectively co…

thiol oxidationprotein tyrosine nitrationlcsh:Chemistrychemistry.chemical_compoundCytochrome P-450 Enzyme SystemSf9 CellsTyrosinelcsh:QH301-705.5Spectroscopychemistry.chemical_classification0303 health sciencesbiologySuperoxide030302 biochemistry & molecular biologyGeneral MedicineComputer Science ApplicationsIntramolecular OxidoreductasesBiochemistryThiolprostacyclin synthasesuperoxideOxidation-ReductionPeroxynitriteOxidative phosphorylationSpodopteraCatalysisArticleperoxynitriteNitric oxideProstacyclin synthaseInorganic Chemistry03 medical and health sciencesnitric oxideddc:570NitrationPeroxynitrous AcidAnimalsHumansSulfhydryl CompoundsPhysical and Theoretical ChemistryMolecular Biology030304 developmental biologyOrganic Chemistrynitric oxide; superoxide; peroxynitrite; protein tyrosine nitration; thiol oxidation; peroxynitrite scavengers; prostacyclin synthasechemistrylcsh:Biology (General)lcsh:QD1-999biology.proteinTyrosineCattleperoxynitrite scavengersProtein Processing Post-TranslationalInternational journal of molecular sciences
researchProduct

Environmental noise is a cardiovascular risk factor – mechanistic insights on oxidative stress, inflammatory pathways and endothelial dysfunction and…

2020

business.industryInflammationDiabetic mousemedicine.diseasemedicine.disease_causeBiochemistryDiabetes mellitusImmunologyGeneticsmedicineInflammatory pathwaysEndothelial dysfunctionmedicine.symptomRisk factorbusinessMolecular BiologyOxidative stressBiotechnologyThe FASEB Journal
researchProduct

Vascular Dysfunction and Oxidative Stress in Diabetic Rats - Comparison of Beneficial Effects of AT1- Receptor Blockade, Calcium Antagonist, or Combi…

2013

medicine.medical_specialtyCombination therapybusiness.industryAntagonistchemistry.chemical_elementPharmacologyCalciummedicine.disease_causeBiochemistryEndocrinologyAt1 receptor blockadechemistryPhysiology (medical)Internal medicinemedicinebusinessBeneficial effectsOxidative stressFree Radical Biology and Medicine
researchProduct

Formation of 2-nitrophenol from salicylaldehyde as a suitable test for low peroxynitrite fluxes

2016

There has been some dispute regarding reaction products formed at physiological peroxynitrite fluxes in the nanomolar range with phenolic molecules, when used to predict the behavior of protein-bound aromatic amino acids like tyrosine. Previous data showed that at nanomolar fluxes of peroxynitrite, nitration of these phenolic compounds was outcompeted by dimerization (e.g. biphenols or dityrosine). Using 3-morpholino sydnonimine (Sin-1), we created low fluxes of peroxynitrite in our reaction set-up to demonstrate that salicylaldehyde displays unique features in the detection of physiological fluxes of peroxynitrite, yielding detectable nitration but only minor dimerization products. By mean…

0301 basic medicineClinical BiochemistryPhotochemistryBiochemistryAdductNitrophenols03 medical and health scienceschemistry.chemical_compoundddc:570NitrationPeroxynitrous AcidAromatic amino acidsLeukocytesOrganic chemistryMoleculeHumansTyrosinelcsh:QH301-705.5Chromatography High Pressure Liquidlcsh:R5-920AldehydesMolecular StructureOrganic ChemistryPeroxynitrous acid030104 developmental biologylcsh:Biology (General)chemistrySalicylaldehydelcsh:Medicine (General)PeroxynitriteResearch PaperRedox Biology
researchProduct

Hyperglycemia and oxidative stress in cultured endothelial cells – a comparison of primary endothelial cells with an immortalized endothelial cell li…

2012

Diabetes mellitus is a major risk factor for the development of cardiovascular disease and oxidative stress plays an important role in this process. Therefore, we investigated the effects of hyperglycemia on the formation of reactive oxygen species (ROS) and nitric oxide/cGMP signaling in two different endothelial cell cultures. Human umbilical vein endothelial cells (HUVEC) and EA.hy 926 cells showed increased oxidative stress and impaired NO-cGMP signaling in response to hyperglycemia. The major difference between the two different cell types was the dramatic decrease in viability in HUVEC whereas EA.hy cells showed rather increased growth under hyperglycemic conditions. Starvation led to…

medicine.medical_specialtyCell typeEndotheliumCell SurvivalEndocrinology Diabetes and MetabolismPrimary Cell CultureBiologyNitric Oxidemedicine.disease_causeUmbilical veinEndocrinologyInternal medicineHuman Umbilical Vein Endothelial CellsInternal MedicinemedicineHumansEndothelial dysfunctionCyclic GMPCells CulturedCell Line Transformedchemistry.chemical_classificationReactive oxygen speciesCell DeathDose-Response Relationship Drugmedicine.diseaseEndothelial stem cellOxidative StressGlucoseEndocrinologymedicine.anatomical_structurechemistryCell cultureHyperglycemiaEndothelium VascularReactive Oxygen SpeciesOxidative stressJournal of Diabetes and its Complications
researchProduct

Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key ro…

2019

Abstract Aims Electronic (e)-cigarettes have been marketed as a ‘healthy’ alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. Methods and results Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined b…

Behavioural risk factorInflammationElectronic Nicotine Delivery Systems030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeVascular MedicineLifestyle drugNicotineLipid peroxidationMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBasic ScienceAnimalsHumansMedicineEndothelial dysfunction030212 general & internal medicineEndothelial dysfunctionMacitentanNADPH oxidasebiologybusiness.industryBrainNADPH Oxidasesmedicine.diseaseE-cigarette vapourEditor's ChoiceLeukemia Myeloid AcuteOxidative Stressmedicine.anatomical_structurechemistryE-Cigarette VaporNADPH Oxidase 2Neoplastic Stem Cellsbiology.proteinmedicine.symptomCardiology and Cardiovascular MedicinebusinessOxidative stressmedicine.drugBlood vesselEuropean Heart Journal
researchProduct

Characterization of New Organic Nitrate Hybrid Drugs Covalently Bound to Valsartan and Cilostazol

2012

Background and Purpose: Organic nitrates represent a group of nitrovasodilators that are clinically used for the treatment of ischemic heart disease. With the present studies we synthesized and characterized new organic nitrate hybrid molecules. Compounds CLC-1265 (valsartan mononitrate) and CLC-1280 (valsartan dinitrate) are derivatives of the angiotensin receptor blocker valsartan, with CLC-1265 containing a single organic nitrate linker and CLC-1280 also containing a second, different linker. Compounds CLC-2000 (cilostazol mononitrate) and CLC-2100 (cilostazol dinitrate) are nitrate derivatives of the phosphodiesterase III inhibitor cilostazol. All compounds are designed as hybrid molecu…

MaleVasodilator AgentsTetrazoleschemistry.chemical_elementmedicine.disease_causeOxygenchemistry.chemical_compoundNitratemedicineAnimalsOrganic chemistryRats WistarPharmacologyNitratesValineGeneral MedicineIn vitroCilostazolRatsCilostazolOxidative StressValsartanchemistryVasoconstrictionCovalent bondValsartanLinkerPlatelet Aggregation InhibitorsOxidative stressmedicine.drugPharmacology
researchProduct

Reconstitution of Myelomonocyte-Depleted Mice With Monocytes, But Not With Neutrophils, Reestablishes Arterial Hypertension and Oxidative Stress in R…

2011

0303 health sciencesmedicine.medical_specialty030309 nutrition & dieteticsbusiness.industry030302 biochemistry & molecular biologymedicine.disease_causemedicine.diseaseBiochemistry03 medical and health sciencesEndocrinologyPhysiology (medical)Pathophysiology of hypertensionInternal medicinemedicinebusinessMyelomonocyteOxidative stressFree Radical Biology and Medicine
researchProduct

Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats

2015

Chronic nitroglycerin (GTN) anti-ischemic therapy induces side effects such as nitrate tolerance and endothelial dysfunction. Both phenomena could be based on a desensitization/oxidation of the soluble guanylyl cyclase (sGC). Therefore, the present study aims at investigating the effects of the therapy with the sGC activator BAY 60-2770 and the sGC stimulator BAY 41-8543 on side effects induced by chronic nitroglycerin treatment. Male Wistar rats were treated with nitroglycerin (100mg/kg/d for 3.5days, s.c. in ethanol) and BAY 60-2770 (0.5 or 2.5mg/kg/d) or BAY 41-8543 (1 and 5mg/kg/d) for 6days. Therapy with BAY 60-2770 but not with BAY 41-8543 improved nitroglycerin-triggered endothelial …

MaleHydrocarbons FluorinatedPhysiologyMorpholinesReceptors Cytoplasmic and NuclearVasodilationStimulationPharmacologymedicine.disease_causeBenzoatesNitric oxideNitroglycerinchemistry.chemical_compoundOrgan Culture TechniquesSoluble Guanylyl CyclasemedicineAnimalsPharmacology (medical)Rats WistarEndothelial dysfunctionAortaWhole bloodPharmacologyNitratesActivator (genetics)business.industryNitrotyrosineBiphenyl Compoundsmedicine.diseaseRatsBiphenyl compoundEnzyme ActivationOxidative StressPyrimidineschemistryGuanylate CyclaseMeeting Abstractcardiovascular systemMolecular MedicineSoluble guanylyl cyclasebusinessOxidative stressBMC Pharmacology and Toxicology
researchProduct

the role of mitochondrial aldehyde dehydrognase (ALDH-2) for bioactivation of organic nitrates: “Proof of concept” through investigations in ALDH-2 k…

2006

Pharmacologychemistry.chemical_classificationchemistrybiologyBiochemistryPhysiologyStereochemistryKnockout mousebiology.proteinMolecular MedicineAldehyde dehydrogenaseAldehydeOrganic nitratesVascular Pharmacology
researchProduct

Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress

2008

Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents. The mechanisms underlying nitrate tolerance remain incompletely defined and are likely multifactorial. One mechanism seems to be a diminished bioconversion of nitroglycerin, another seems to be the induction of vascular oxidative stress, and a third may include neurohumoral adaptations. Recent studies have revealed that mitochondrial reactive oxygen…

Heart DiseasesAldehyde dehydrogenaseOxidative phosphorylationBiologymedicine.disease_causeNitrate reductaseNitroglycerinchemistry.chemical_compoundmedicineAnimalsHumansEndothelial dysfunctionPharmacologychemistry.chemical_classificationReactive oxygen speciesNitratesSuperoxideAldehyde Dehydrogenase MitochondrialDrug ToleranceGeneral MedicineAldehyde Dehydrogenasemedicine.diseaseMitochondriaOxidative StressBiochemistrychemistrybiology.proteinEndothelium VascularOxidative stressPeroxynitritePharmacological Reports
researchProduct

Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates.

2007

Objective— Nitrate tolerance is likely attributable to an increased production of reactive oxygen species (ROS) leading to an inhibition of the mitochondrial aldehyde dehydrogenase (ALDH-2), representing the nitroglycerin (GTN) and pentaerythrityl tetranitrate (PETN) bioactivating enzyme, and to impaired nitric oxide bioactivity and signaling. We tested whether differences in their capacity to induce heme oxygenase-1 (HO-1) might explain why PETN and not GTN therapy is devoid of nitrate and cross-tolerance. Methods and Results— Wistar rats were treated with PETN or GTN (10.5 or 6.6 μg/kg/min for 4 days). In contrast to GTN, PETN did not induce nitrate tolerance or cross-tolerance as assess…

MaleEndotheliumPharmacologySensitivity and SpecificityNitric oxidechemistry.chemical_compoundNitroglycerinRandom AllocationDrug toleranceReference ValuesmedicineAnimalsPentaerythritol TetranitrateRats WistarHemeCyclic GMPChromatography High Pressure LiquidProbabilitychemistry.chemical_classificationReactive oxygen speciesbiologyDrug ToleranceFree Radical ScavengersAldehyde DehydrogenaseRatsHeme oxygenaseFerritinDisease Models Animalmedicine.anatomical_structurechemistryBiochemistrycardiovascular systembiology.proteinEndothelium VascularCardiology and Cardiovascular MedicineReactive Oxygen SpeciesHeme Oxygenase-1HeminArteriosclerosis, thrombosis, and vascular biology
researchProduct

Tolerance to nitroglycerin-induced preconditioning of the endothelium: a human in vivo study

2009

Damage and dysfunction of the vascular endothelium critically influence clinical outcomes after ischemia and reperfusion (I/R). Brief exposure to organic nitrates can protect the vascular endothelium from I/R injury via a mechanism that is similar to ischemic preconditioning and is independent of hemodynamic changes. The clinical relevance of these protective effects clearly depends on whether they can be sustained over time. Twenty-four healthy (age 25–32) male volunteers were randomized to receive 1) transdermal nitroglycerin (GTN; 0.6 mg/h) administered for 2 h on 1 day only, 2) transdermal GTN for 2 h/day for 7 days, or 3) continuous therapy with transdermal GTN for 7 days. Eight volunt…

AdultMalemedicine.medical_specialtyEndotheliumPhysiologyVasodilator AgentsIschemiaAscorbic AcidAdministration CutaneousAntioxidantsNitroglycerinIn vivoPhysiology (medical)Internal medicinemedicineHumansInfusions Intra-ArterialIschemic PreconditioningNitroglycerinDose-Response Relationship Drugbusiness.industryDrug Tolerancemedicine.diseaseAcetylcholineOrganic nitratesPlethysmographyVascular endotheliummedicine.anatomical_structureReperfusion InjuryAnesthesiaCirculatory systemcardiovascular systemCardiologyIschemic preconditioningEndothelium VascularCardiology and Cardiovascular Medicinebusinesscirculatory and respiratory physiologymedicine.drugAmerican Journal of Physiology-Heart and Circulatory Physiology
researchProduct

Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD+/-): a novel approach to assess the role of oxidative stress for the develo…

2005

Nitroglycerin (GTN)-induced tolerance was reported to be associated with increased levels of reactive oxygen species (ROS) in mitochondria. In the present study, we further investigated the role of ROS for the development of nitrate tolerance by using heterozygous manganese superoxide dismutase knock-out mice (Mn-SOD+/-). Mn-SOD is acknowledged as a major sink for mitochondrial superoxide. Vasodilator potency of mouse aorta in response to acetylcholine and GTN was assessed by isometric tension studies. Mitochondrial ROS formation was detected by 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H)dione sodium salt (L-012)-enhanced chemiluminescence and mitochondrial aldehyde dehydro…

Mitochondrial ROSHeterozygoteAldehyde dehydrogenaseMitochondrionPharmacologymedicine.disease_causeMitochondria HeartSuperoxide dismutaseMiceNitroglycerinDrug tolerancemedicineAnimalsEndothelial dysfunctionAortaPharmacologychemistry.chemical_classificationReactive oxygen speciesbiologySuperoxide DismutaseDrug ToleranceAldehyde Dehydrogenasemedicine.diseaseEnzyme ActivationMice Inbred C57BLOxidative StresschemistryBiochemistrycardiovascular systembiology.proteinMolecular MedicineOxidative stresscirculatory and respiratory physiologyMolecular pharmacology
researchProduct

Endothelial GLP-1 (Glucagon-Like Peptide 1) Receptor Mediates Cardiovascular Protection by Liraglutide In Mice With Experimental Arterial Hypertension

2019

Supplemental Digital Content is available in the text.

0301 basic medicineMalemedicine.medical_specialtyhypertensionBlotting WesternInflammationBlood Pressure030204 cardiovascular system & hematologyangiotensin IImedicine.disease_causeGlucagon-Like Peptide-1 Receptor1005403 medical and health sciencesMice0302 clinical medicine10030Internal medicinemedicineoxidative stressAnimalsHypoglycemic AgentsReceptor10111Cells CulturedMice KnockoutliraglutideLiraglutidebusiness.industryBasic SciencesType 2 Diabetes MellitusEndothelial CellsAtherosclerosisGlucagon-like peptide-1Angiotensin II3. Good healthMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinology10040inflammationComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRNAmedicine.symptomCardiology and Cardiovascular Medicinebusiness10024Oxidative stressmedicine.drug
researchProduct

Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition.

2012

Aims Dipeptidyl peptidase-4 (DPP-4) inhibitors are a novel class of drugs for the treatment of hyperglycaemia. Preliminary evidence suggests that their antioxidant and anti-inflammatory effects may have beneficial effects on the cardiovascular complications of diabetes. In the present study, we investigate in an experimental sepsis model whether linagliptin exerts pleiotropic vascular effects independent of its glucose-lowering properties. Methods and results Linagliptin (83 mg/kg chow for 7days) was administered in a rat model of lipopolysaccharide (LPS) (10 mg/kg, single i.p. dose/24 h)-induced sepsis. Vascular relaxation, reactive oxygen species (ROS) formation, expression of NADPH oxida…

LipopolysaccharidesMalemedicine.medical_specialtyPhysiologyNeutrophilsAdministration OralVasodilationLinagliptinBiologyLinagliptinAntioxidantsProinflammatory cytokineSepsisPhysiology (medical)Internal medicineSepsismedicineLeukocytesAnimalsHumansEndothelial dysfunctionRats WistarDipeptidyl peptidase-4Respiratory BurstDipeptidyl-Peptidase IV InhibitorsNADPH oxidasemedicine.diseaseRespiratory burstRatsVasodilationOxidative StressEndocrinologyPurinesbiology.proteinQuinazolinesCardiology and Cardiovascular MedicineDiabetic Angiopathiesmedicine.drugCardiovascular research
researchProduct

ALDH-2 deficiency increases cardiovascular oxidative stress--evidence for indirect antioxidative properties.

2007

Abstract Mitochondrial aldehyde dehydrogenase (ALDH-2) reduces reactive oxygen species (ROS) formation related to toxic aldehydes; additionally, it provides a bioactivating pathway for nitroglycerin. Since acetaldehyde, nitroglycerin, and doxorubicin treatment provoke mitochondrial oxidative stress, we used ALDH-2−/− mice and purified recombinant human ALDH-2 to test the hypothesis that ALDH-2 has an indirect antioxidant function in mitochondria. Antioxidant capacity of purified ALDH-2 was comparable to equimolar doses of glutathione, cysteine, and dithiothreitol; mitochondrial oxidative stress was comparable in C57Bl6 and ALDH-2−/− mice after acute challenges with nitroglycerin or doxorubi…

Mitochondrial ROSAntioxidantmedicine.medical_treatmentBiophysicsAldehyde dehydrogenaseAcetaldehydeMitochondrionPharmacologymedicine.disease_causeBiochemistryCardiovascular SystemModels BiologicalAntioxidantschemistry.chemical_compoundMiceNitroglycerinmedicineAnimalsHumansCysteineMolecular Biologychemistry.chemical_classificationReactive oxygen speciesbiologyDose-Response Relationship DrugAldehyde Dehydrogenase MitochondrialAcetaldehydeCell BiologyGlutathioneAldehyde DehydrogenaseGlutathioneMitochondriaMice Inbred C57BLDithiothreitolOxidative StresschemistryBiochemistryDoxorubicincardiovascular systembiology.proteinReactive Oxygen SpeciesOxidative stressBiochemical and biophysical research communications
researchProduct

Mechanisms of Increased Vascular Superoxide Production in an Experimental Model of Idiopathic Dilated Cardiomyopathy

2005

Objective— In the present study, we sought to identify mechanisms underlying increased oxidative stress in vascular tissue in an experimental animal model of chronic congestive heart failure (CHF). Methods and Results— Superoxide and nitric oxide (NO) was measured in vessels from cardiomyopathic hamsters (CHF hamsters) and golden Syrian hamsters. We also determined expression of endothelial nitric oxide synthase (NOSIII), the soluble guanylyl cyclase, the cGMP-dependent kinase, and the NADPH oxidase. To analyze the contribution of the renin-angiotensin system to oxidative stress, CHF hamsters were treated with the angiotensin-converting enzyme inhibitor captopril for 200 days (120 mg · kg …

Cardiomyopathy DilatedMalemedicine.medical_specialtyCaptoprilNitric Oxide Synthase Type IIIReceptors Cytoplasmic and NuclearAngiotensin-Converting Enzyme InhibitorsNitric Oxidemedicine.disease_causeNitric oxideRenin-Angiotensin Systemchemistry.chemical_compoundSoluble Guanylyl CyclaseSuperoxidesCricetinaeInternal medicineIdiopathic dilated cardiomyopathymedicineAnimalsHeart FailureNADPH oxidaseMesocricetusbiologybusiness.industrySuperoxideMyocardiumBody WeightMicrofilament ProteinsNADPH OxidasesCaptoprilOrgan SizePhosphoproteinsDisease Models AnimalOxidative StressEndocrinologychemistryGuanylate CyclaseACE inhibitorbiology.proteinFemaleCardiology and Cardiovascular MedicinebusinessSoluble guanylyl cyclaseCell Adhesion MoleculesOxidative stressmedicine.drugArteriosclerosis, Thrombosis, and Vascular Biology
researchProduct

Mitochondrial aldehyde dehydrogenase (ALDH-2)--maker of and marker for nitrate tolerance in response to nitroglycerin treatment.

2008

The hemodynamic and anti-ischemic effects of nitroglycerin (GTN) are rapidly blunted as a result of the development of nitrate tolerance. Long-term nitrate treatment also is associated with decreased vascular responsiveness caused by changes in intrinsic mechanisms of the tolerant vasculature itself. According to the oxidative stress concept, increased vascular superoxide and peroxynitrite production as well as an increased sensitivity to vasoconstrictors secondary to activation of protein kinase C as well as vascular NADPH oxidases contribute to the development of tolerance. Recent experimental work has defined new tolerance mechanisms, including inhibition of the enzyme that bioactivates …

Aldehyde dehydrogenasePharmacologyToxicologymedicine.disease_causeProstacyclin synthasechemistry.chemical_compoundNitroglycerinDrug tolerancemedicineHumansEndothelial dysfunctionchemistry.chemical_classificationReactive oxygen speciesNitratesbiologyAldehyde Dehydrogenase MitochondrialGeneral MedicineDrug ToleranceAldehyde Dehydrogenasemedicine.diseaseMitochondriaOxidative StresschemistryBiochemistrycardiovascular systembiology.proteinSoluble guanylyl cyclasePeroxynitriteOxidative stresscirculatory and respiratory physiologyChemico-biological interactions
researchProduct

The "exposome" concept - how environmental risk factors influence cardiovascular health.

2019

There is general consensus that environmental pollution and non-chemical stressors contribute to the incidence and prevalence of chronic noncommunicable disease (e.g. cardiovascular, metabolic and mental). Clinical and epidemiological studies support that air pollution and traffic noise are associated with a higher risk for cardiovascular disease and significantly contribute to overall mortality. In this respect, the “exposome” provides a comprehensive description of lifelong exposure history. A recent publication using an updated global exposure-mortality model found that the global all-cause mortality rate attributable to ambient air pollution by PM2.5 and O3 was 8.79 (95% CI 7.11–10.41) …

AdultMaleExposomemedicine.medical_specialtyAdolescentAircraftAir pollutionEnvironmental pollutionDiseasemedicine.disease_causeGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMiceYoung AdultRisk FactorsEnvironmental healthAir PollutionMetals HeavyEpidemiologyMedicineAnimalsHumansChildNoncommunicable DiseasesAgedAged 80 and over0303 health sciencesbusiness.industryMortality rate030302 biochemistry & molecular biologyTraffic noiseStressorInfant NewbornInfantMiddle AgedExposomeCardiovascular DiseasesChild PreschoolFemalebusinessNoiseStress PsychologicalActa biochimica Polonica
researchProduct

Role of Reduced Lipoic Acid in the Redox Regulation of Mitochondrial Aldehyde Dehydrogenase (ALDH-2) Activity

2007

Chronic therapy with nitroglycerin results in a rapid development of nitrate tolerance, which is associated with an increased production of reactive oxygen species. We have recently shown that mitochondria are an important source of nitroglycerin-induced oxidants and that the nitroglycerin-bioactivating mitochondrial aldehyde dehydrogenase is oxidatively inactivated in the setting of tolerance. Here we investigated the effect of various oxidants on aldehyde dehydrogenase activity and its restoration by dihydrolipoic acid. In vivo tolerance in Wistar rats was induced by infusion of nitroglycerin (6.6 microg/kg/min, 4 days). Vascular reactivity was measured by isometric tension studies of iso…

biologyChemistryAldehyde dehydrogenaseDehydrogenaseCell BiologyOxidative phosphorylationMitochondrionBiochemistrychemistry.chemical_compoundLipoic acidBiochemistryDihydrolipoic acidcardiovascular systembiology.proteinBranched-chain alpha-keto acid dehydrogenase complexMolecular BiologyPeroxynitriteJournal of Biological Chemistry
researchProduct

NADPH Oxidase Accounts for Enhanced Superoxide Production and Impaired Endothelium-Dependent Smooth Muscle Relaxation in BKβ1 −/− Mice

2006

Objective— Nitric oxide (NO)-induced vasorelaxation involves activation of large conductance Ca 2+ -activated K + channels (BK). A regulatory BKβ1 subunit confers Ca 2+ , voltage, and NO/cGMP sensitivity to the BK channel. We investigated whether endothelial function and NO/cGMP signaling is affected by a deletion of the β1-subunit. Methods and Results— Vascular superoxide in BKβ1 −/− was measured using the fluorescent dye hydroethidine and lucigenin-enhanced chemiluminescence. Vascular NO formation was analyzed using electron paramagnetic resonance (EPR), expression of NADPH oxidase subunits, the endothelial NO synthase (eNOS), the soluble guanylyl cyclase (sGC), as well as the activity a…

medicine.medical_specialtyNitric Oxide Synthase Type IIIEndotheliumAorta ThoracicNitric OxideMuscle Smooth VascularNitric oxideMicechemistry.chemical_compoundSuperoxidesInternal medicineCyclic GMP-Dependent Protein KinasesmedicineAnimalsHumansProtein IsoformsNADH NADPH OxidoreductasesLarge-Conductance Calcium-Activated Potassium ChannelsMice KnockoutNADPH oxidasebiologySuperoxideMicrofilament ProteinsNADPH OxidasesPhosphoproteinsMolecular biologyVasodilationEndocrinologymedicine.anatomical_structurechemistryGuanylate CyclaseNAD(P)H oxidaseNOX1ApocyninNADPH Oxidase 1biology.proteinEndothelium VascularCardiology and Cardiovascular MedicineSoluble guanylyl cyclaseCell Adhesion MoleculesSignal TransductionArteriosclerosis, Thrombosis, and Vascular Biology
researchProduct

Sodium-glucose cotransporter 2 inhibitors, diabetes, and oxidative stress

2020

Abstract Diabetes and related metabolic diseases have a high prevalence with increasing incidence and create a significant socioeconomic burden by their contribution to global mortality and disability adjusted life years. Whereas the contribution of communicable disease to global deaths decreased during the last 25 years, the contribution by chronic noncommunicable disease and environmental factors increased within this time period. According to data of the Global Burden of Disease Study high fasting plasma glucose and high total cholesterol rank in place 3 and 4 in the list of global health risk factors, just behind high blood pressure and smoking. Diabetes adversely affects endothelial an…

Communicable diseasebusiness.industryPhysiologyDiseasemedicine.diseasemedicine.disease_causeBlood pressureDiabetes mellitusSodium/Glucose Cotransporter 2Global healthmedicineEndothelial dysfunctionbusinessOxidative stress
researchProduct

Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice.

2007

Background— We have recently demonstrated that activity of red blood cell glutathione peroxidase-1 is inversely associated with the risk of cardiovascular events in patients with coronary artery disease. The present study analyzed the effect of glutathione peroxidase-1 deficiency on atherogenesis in the apolipoprotein E-deficient mouse. Methods and Results— Female apolipoprotein E-deficient mice with and without glutathione peroxidase-1 deficiency were placed on a Western-type diet for another 6, 12, or 24 weeks. After 24 weeks on Western-type diet, double-knockout mice (GPx-1 −/− ApoE −/− ) developed significantly more atherosclerosis than control apolipoprotein E-deficient mice. Moreover…

Apolipoprotein Emedicine.medical_specialtyGPX1AntioxidantApolipoprotein Bmedicine.medical_treatmentLipoproteinsApoptosisBlood Pressuremedicine.disease_causeNitric OxideMitochondria HeartMonocyteschemistry.chemical_compoundMiceApolipoproteins EGlutathione Peroxidase GPX1SuperoxidesInternal medicinePeroxynitrous AcidmedicineAnimalsAortaCell Proliferationchemistry.chemical_classificationMice KnockoutReactive oxygen speciesGlutathione PeroxidaseMembranesbiologyGlutathione peroxidaseGlutathioneAtherosclerosisEndocrinologyPhenotypechemistryImmunologybiology.proteinDisease ProgressionFemaleCardiology and Cardiovascular MedicineReactive Oxygen SpeciesOxidation-ReductionOxidative stressArteriosclerosis, thrombosis, and vascular biology
researchProduct

Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function

2016

Cardiovascular diseases are associated with and/or caused by oxidative stress. This concept has been proven by using the approach of genetic deletion of reactive species producing (pro-oxidant) enzymes as well as by the overexpression of reactive species detoxifying (antioxidant) enzymes leading to a marked reduction of reactive oxygen and nitrogen species (RONS) and in parallel to an amelioration of the severity of diseases. Likewise, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of antioxidant RONS detoxifying enzymes. Thus, the consequences of the interaction (redox crosstalk) of superoxide/hydroge…

0301 basic medicinePharmacologychemistry.chemical_classificationReactive oxygen speciesNADPH oxidaseAntioxidantbiologySuperoxidemedicine.medical_treatmentMitochondrionmedicine.disease_cause03 medical and health scienceschemistry.chemical_compoundCrosstalk (biology)030104 developmental biologychemistryBiochemistrybiology.proteinmedicineReactive nitrogen speciesOxidative stressBritish Journal of Pharmacology
researchProduct

Environmental aircraft noise aggravates oxidative DNA damage, granulocyte oxidative burst and nitrate resistance inOgg1–/–mice

2020

Background: Large epidemiological studies point towards a link between the incidence of arterial hypertension, ischaemic heart disease, metabolic disease and exposure to traffic noise, supporting t...

0301 basic medicine030102 biochemistry & molecular biologybusiness.industryEnvironmental stressorTraffic noiseGeneral MedicineGranulocytemedicine.diseasemedicine.disease_causeBiochemistryRespiratory burstOxidative dna damage03 medical and health scienceschemistry.chemical_compound030104 developmental biologymedicine.anatomical_structureNitratechemistryImmunologymedicineEndothelial dysfunctionbusinessOxidative stressFree Radical Research
researchProduct

CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice

2018

Abstract Aims CD40 ligand (CD40L) signaling controls vascular oxidative stress and related dysfunction in angiotensin-II-induced arterial hypertension by regulating vascular immune cell recruitment and platelet activation. Here we investigated the role of CD40L in experimental hyperlipidemia. Methods and results Male wild type and CD40L−/− mice (C57BL/6 background) were subjected to high fat diet for sixteen weeks. Weight, cholesterol, HDL, and LDL levels, endothelial function (isometric tension recording), oxidative stress (NADPH oxidase expression, dihydroethidium fluorescence) and inflammatory parameters (inducible nitric oxide synthase, interleukin-6 expression) were assessed. CD40L exp…

Male0301 basic medicinePhysiologyAnti-Inflammatory AgentsNitric Oxide Synthase Type II030204 cardiovascular system & hematologyWeight Gainmedicine.disease_causeAntioxidantschemistry.chemical_compound0302 clinical medicineHyperlipidemiaEndothelial dysfunctionMice KnockoutbiologyLeptinLipidsVasodilationNitric oxide synthaseInflammation Mediatorsmedicine.symptomCardiology and Cardiovascular Medicinemedicine.medical_specialtyCD40 LigandHyperlipidemiasInflammationDiet High-Fat03 medical and health sciencesPhysiology (medical)Internal medicinemedicineAnimalsHumansObesityPlatelet activationInflammationTNF Receptor-Associated Factor 6Interleukin-6Cholesterolbusiness.industryMyocardiumNADPH OxidasesPlatelet Activationmedicine.diseaseMice Inbred C57BLDisease Models AnimalOxidative Stress030104 developmental biologyEndocrinologyDiabetes Mellitus Type 2chemistrybiology.proteinEndothelium VascularbusinessBiomarkersOxidative stressCardiovascular Research
researchProduct

The anti-cancer drug doxorubicin induces substantial epigenetic changes in cultured cardiomyocytes.

2019

Abstract The anthracycline doxorubicin (DOX) is widely used in cancer therapy with the limitation of cardiotoxicity leading to the development of congestive heart failure. DOX-induced oxidative stress and changes of the phosphoproteome as well as epigenome were described but the exact mechanisms of the adverse long-term effects are still elusive. Here, we tested the impact of DOX treatment on cell death, oxidative stress parameters and expression profiles of proteins involved in epigenetic pathways in a cardiomyocyte cell culture model. Markers of oxidative stress, apoptosis and expression of proteins involved in epigenetic processes were assessed by immunoblotting in cultured rat myoblasts…

0301 basic medicineProgrammed cell deathMethyltransferaseApoptosisToxicologymedicine.disease_causeHistone DeacetylasesEpigenesis GeneticHistones03 medical and health sciences0302 clinical medicinemedicineAnimalsMyocytes CardiacEpigeneticsCells CulturedHistone DemethylasesAntibiotics AntineoplasticbiologyDose-Response Relationship DrugHistone deacetylase 2ChemistryGeneral MedicineEpigenomeHydrogen PeroxideCardiotoxicityCell biologyRatsOxidative Stress030104 developmental biologyHistoneAcetylationDoxorubicin030220 oncology & carcinogenesisbiology.proteinOxidative stressBiomarkersChemico-biological interactions
researchProduct

Abstract 412: The Sodium-Glucose Cotransporter 2 Inhibitor Empagliflozin Improves Diabetic Complications in the Streptozotocin Type 1 Diabetes Mellit…

2014

Objectives: In diabetes, cardiovascular complications are associated with endothelial dysfunction and oxidative stress. Empagliflozin (Empa), as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i) in clinical development, offers a promising novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with Empa could improve endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated oxidative stress. Research Design and Methods: Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection Empa…

medicine.medical_specialtyType 1 diabetesbusiness.industryType 2 diabetesmedicine.diseasemedicine.disease_causeStreptozotocinEndocrinologyInternal medicineDiabetes mellitusmedicineEmpagliflozinEndothelial dysfunctionSGLT2 InhibitorCardiology and Cardiovascular MedicinebusinessOxidative stressmedicine.drugArteriosclerosis, Thrombosis, and Vascular Biology
researchProduct

Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice

2017

Aims Epidemiological studies indicate that traffic noise increases the incidence of coronary artery disease, hypertension and stroke. The underlying mechanisms remain largely unknown. Field studies with nighttime noise exposure demonstrate that aircraft noise leads to vascular dysfunction, which is markedly improved by vitamin C, suggesting a key role of oxidative stress in causing this phenomenon. Methods and results We developed a novel animal model to study the vascular consequences of aircraft noise exposure. Peak sound levels of 85 and mean sound level of 72 dBA applied by loudspeakers for 4 days caused an increase in systolic blood pressure, plasma noradrenaline and angiotensin II lev…

0301 basic medicinemedicine.medical_specialty030204 cardiovascular system & hematologymedicine.disease_causeVascular remodelling in the embryo03 medical and health scienceschemistry.chemical_compound0302 clinical medicineEnosInternal medicinemedicineEndothelial dysfunctionbiologybusiness.industryNitrotyrosineEnvironmental stressormedicine.diseasebiology.organism_classificationAngiotensin II030104 developmental biologyEndocrinologychemistrymedicine.symptomCardiology and Cardiovascular MedicinebusinessVasoconstrictionOxidative stressEuropean Heart Journal
researchProduct

Angiotensin II-induced vascular dysfunction depends on interferon-γ-driven immune cell recruitment and mutual activation of monocytes and NK-cells.

2013

Objective— Immune cells contribute to angiotensin II (ATII)–induced vascular dysfunction and inflammation. Interferon-γ (IFN-γ), an inflammatory cytokine exclusively produced by immune cells, seems to be involved in ATII-driven cardiovascular injury, but the actions and cellular source of IFN-γ remain incompletely understood. Approach and Results— IFN-γ −/− and Tbx21 −/− mice were partially protected from ATII-induced (1 mg/kg per day of ATII, infused subcutaneously by miniosmotic pumps) vascular endothelial and smooth muscle dysfunction, whereas mice overexpressing IFN-γ showed constitutive vascular dysfunction. Absence of T-box expressed in T cells (T-bet), the IFN-γ transcription factor…

Malemedicine.medical_specialtyAdoptive cell transfermedicine.medical_treatmentInflammationBiologyMonocytesInterferon-gammaMiceRandom AllocationImmune systemReference ValuesInternal medicinemedicineAnimalsVascular DiseasesVascular recruitmentVascular tissueAortaAngiotensin IIAngiotensin IIKiller Cells NaturalMice Inbred C57BLDisease Models AnimalOxidative StressCytokineEndocrinologyInterleukin 12Endothelium Vascularmedicine.symptomCardiology and Cardiovascular MedicineArteriosclerosis, thrombosis, and vascular biology
researchProduct

First Evidence for a Crosstalk Between Mitochondrial and NADPH Oxidase-Derived Reactive Oxygen Species in Nitroglycerin-Triggered Vascular Dysfunction

2008

Chronic nitroglycerin treatment results in development of nitrate tolerance associated with endothelial dysfunction (ED). We sought to clarify how mitochondria- and NADPH oxidase (Nox)-derived reactive oxygen species (ROS) contribute to nitrate tolerance and nitroglycerin-induced ED. Nitrate tolerance was induced by nitroglycerin infusion in male Wistar rats (100 microg/h/4 day) and in C57/Bl6, p47(phox/) and gp91(phox/) mice (50 microg/h/4 day). Protein and mRNA expression of Nox subunits were unaltered by chronic nitroglycerin treatment. Oxidative stress was determined in vascular rings and mitochondrial fractions of nitroglycerin-treated animals by L-012 enhanced chemiluminescence, revea…

MalePhysiologyVasodilator AgentsClinical BiochemistryMitochondrionPharmacologymedicine.disease_causeBiochemistryMitochondria HeartMiceNitroglycerinchemistry.chemical_compoundEthidiumAortaChromatography High Pressure LiquidHeart metabolismGeneral Environmental Sciencechemistry.chemical_classificationNADPH oxidasebiologyReverse Transcriptase Polymerase Chain ReactionReactive Nitrogen SpeciesBiochemistryCyclosporinecardiovascular systemcirculatory and respiratory physiologyBlotting WesternIn Vitro TechniquesTransfectionCell LineRotenonemedicineAnimalsHumansRNA MessengerRats WistarMolecular BiologyReactive oxygen speciesNADPH OxidasesCell BiologyRotenoneRatsMice Inbred C57BLchemistryMitochondrial permeability transition poreVasoconstrictionApocyninbiology.proteinGeneral Earth and Planetary SciencesReactive Oxygen SpeciesOxidative stressAntioxidants & Redox Signaling
researchProduct

Regulation of Human ALDH-2 Activity by Electrophiles – Implications for Organic Nitrate Induced Tolerance, Oxidative Stress and Reactive Fatty Acid M…

2010

chemistry.chemical_classificationbiologyAldehyde dehydrogenaseFatty acidmedicine.disease_causeBiochemistrychemistry.chemical_compoundNitratechemistryBiochemistryPhysiology (medical)Electrophilebiology.proteinmedicineOrganic chemistryOxidative stressFree Radical Biology and Medicine
researchProduct

New and classical methods to compare oxidative stress levels and parameters of vascular function in rat models of hypertension, diabetes and nitrate …

2020

medicine.medical_specialtybusiness.industryRat modelmedicine.disease_causemedicine.diseaseBiochemistrychemistry.chemical_compoundEndocrinologyNitratechemistryInternal medicineDiabetes mellitusGeneticsmedicinebusinessVascular functionMolecular BiologyOxidative stressBiotechnologyThe FASEB Journal
researchProduct

European contribution to the study of ROS : A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

2017

WOS: 000410470000009

0301 basic medicinereactive oxygen species ; reactive nitrogen species ; redox signaling ; oxidative stress ; antioxidants ; redox therapeuticsRedox signalingInternational CooperationSMOOTH-MUSCLE-CELLS[SDV]Life Sciences [q-bio]Clinical BiochemistryISCHEMIA-REPERFUSION INJURYReviewddc:616.07Bioinformaticsmedicine.disease_causeBiochemistryAntioxidants0302 clinical medicineENDOPLASMIC-RETICULUM STRESSCost actionlcsh:QH301-705.5ComputingMilieux_MISCELLANEOUSmedia_commonlcsh:R5-920Redox therapeuticsReactive nitrogen species3. Good healthVariety (cybernetics)MANGANESE SUPEROXIDE-DISMUTASECHRONIC GRANULOMATOUS-DISEASERisk analysis (engineering)ddc:540lcsh:Medicine (General)Oxidation-ReductionSignal TransductionSocieties ScientificPULMONARY ARTERIAL-HYPERTENSIONMedicinaEstrès oxidatiuBiology03 medical and health sciencesAntioxidants ; Oxidative Stress ; Reactive Nitrogen Species ; Reactive Oxygen Species ; Redox Signaling ; Redox TherapeuticsJournal Articlemedicinemedia_common.cataloged_instanceAnimalsHumans[CHIM]Chemical SciencesEuropean UnionEuropean unionNITRIC-OXIDE SYNTHASETANDEM MASS-SPECTROMETRYMolecular BiologyMITOCHONDRIAL OXIDATIVE STRESSGROWTH-FACTOR-BETAOrganic ChemistryDisease progressionBiology and Life SciencesOxidation reductionManganese Superoxide Dismutase030104 developmental biologylcsh:Biology (General)Oxidative stressReactive oxygen species030217 neurology & neurosurgeryOxidative stressRedox biology
researchProduct