Hierarchies of Frequentist Bounds for Quantum Metrology: From Cram\'er-Rao to Barankin
We derive lower bounds on the variance of estimators in quantum metrology by choosing test observables that define constraints on the unbiasedness of the estimator. The quantum bounds are obtained by analytical optimization over all possible quantum measurements and estimators that satisfy the given constraints. We obtain hierarchies of increasingly tight bounds that include the quantum Cram\'er-Rao bound at the lowest order. In the opposite limit, the quantum Barankin bound is the variance of the locally best unbiased estimator in quantum metrology. Our results reveal generalizations of the quantum Fisher information that are able to avoid regularity conditions and identify threshold behav…