0000000001289858
AUTHOR
Patrick Houizot
Solid core microstructured optical fibers from chalcogenide glasses for photonic applications
International audience
Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm
International audience; The aim of this work is to study different compositions in the Ga-Ge-Sb-S system for the definition of two compositions compatible with the elaboration of a single-mode fiber at the 1.55 μm telecom wavelength. The variations of the glass transition temperature (Tg), the dilatation coefficient (α) and the refractive index (n) have been studied for two glasses series: GaxGe25−xSb10S65 (series 1), Ga5Ge25−xSb10S60+x (series 2). This study has lead to the choice of the Ga4Ge21Sb10S65 composition as clad glass for the preparation of the single-mode fiber and Ga5Ge20Sb10S65 composition as the core. The discrepancies for the studied parameters between the core and clad comp…
Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration, Modelization, and Characterization
special issue " Fiber Optic Research in France " (Part III of III); International audience; Chalcogenide fibers present numerous possible applications in the IR field. For many applications, single mode fibers must be obtained. An original way is the realization of microstructured optical fibers (MOFs) with solid core. These fibers present a broad range of optical properties thanks to the high number of freedom degrees of their geometrical structure. In this context, we have developed MOFs for near and mid IR transmission with different geometries and properties such as multimode or endless single-mode operation, small or large mode area fibers. We have also investigated numerically the mai…
High third and second order non linearities of chalcogenide glasses and fibers for compact infrared non linear devices.
Due to their intrinsic nature, chalcogenide glasses present attractive nonlinearities from third and second order, with values reaching between 10 and 1000 times those of silica. We present a study of their properties and their shaping with the purpose to reach efficient devices in the near-mid infrared.
Nonlinear Characterisation of an AsSe Chalcogenide Holey Fiber
oral session TuA " Highly Nonlinear Fibers " [TuA1]; International audience; We report the nonlinear characterization of a chalcogenide holey fiber, based on the AsSe glass composition. A nonlinear coefficient as high as 15 000 W-1 km-1 has been measured.
Fiber-based optical functions for high-bit-rate transmissions
oral
Caractérisation d'une fibre optique ultra non-linéaire en verre de chalcogénure
session orale 3 « Effets nonlinéaires » [Ma1.4], http://optiquelille2009.univ-lille1.fr/; National audience; Nous présentons les résultats expérimentaux concernant la caractérisation d'une fibre optique microstructurée en verre de chalcogénure de composition AsSe. Ces mesures concernent l'atténuation, la dispersion, l'aire effective et le coefficient non-linéaire du troisième ordre. Cette fibre présente un fort potentiel pour des applications non-linéaires avec un coefficient non-linéaire Kerr de 15 400 W-1m-1.
Small-core chalcogenide microstructured fibers for the infrared.
International audience; We report several small-core chalcogenide microstructured fibers fabricated by the "Stack & Draw" technique from Ge(15)Sb(20)S(65) glass with regular profiles. Mode field diameters and losses have been measured at 1.55 microm. For one of the presented fibers, the pitch is 2.5 microm, three times smaller than that already obtained in our previous work, and the corresponding mode field diameter is now as small as 3.5 microm. This fiber, obtained using a two step "Stack & Draw" technique, is single-mode at 1.55 microm from a practical point of view. We also report the first measurement of the attenuation between 1 and 3.5 microm of a chalcogenide microstructured fiber. …
Chalcogenide glass hollow core photonic crystal fibers
International audience; We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from Te20As30Se50 (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the ot…
Elaboration and characterizations of solid core and holow core microstructured chalcogenide fibers
Symposium 25 " Glasses for Optoelectronic and Optical Applications ", Session " Glass Fibers " [PACRIM8-S25-039-2009]; International audience
Photonic crystal fibers from chalcogenide glasses for the mid infrared
International audience
Casting process for manufacturing a low loss chalcogenide photonic crystal fiber
International audience
Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber.
International audience; In this work, we investigate the Brillouin and Raman scattering properties of a Ge15Sb20S65 chalcogenide glass microstructured single mode fiber around 1.55 microm. Through a fair comparison between a 2-m long chalcogenide fiber and a 7.9-km long classical single mode silica fiber, we have found a Brillouin and Raman gain coefficients 100 and 180 larger than fused silica, respectively.
Infrared Photonic Crystal Fibers from chalcogenide glasses for non linear optical applications
International audience
A family of far infrared transmitting glasses in the GaGeTe system for space applications.
International audience
Recent advances in chalcogenide holey fibres
oral
Chalcogenide Photonic Crystal Fibers for Near and Middle Infrared Applications
Chalcogenide glasses are based on sulphur, selenium, tellurium and the addition of other elements such as arsenic, germanium, antimony, gallium, etc. Chalcogenide fibers present numerous applications in the IR field, such as telecommunication at 1.55 mum, spectroscopy and military systems in the two atmospherics windows (3-5 mum and 8-12 mum). One of the interests of chalcogenide glasses is to associate high non linear properties with their Infrared transmission from 0.51 mum to 12-18 mum depending on the composition. Indeed, chalcogenide glasses present high third order optical properties, 100 - 1000 times as high as the non linearity of silica glass at 1.55 mum. For many applications, sin…
Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy
International audience; With an infrared transparency extended to 10 µm, low multiphonon relaxation rates and suitable rare earth solubility, sulphide glasses in the Ge-Ga-Sb-S system allow radiative emission from rare earth ions in the mid-IR range. The Er3+ ion, widely studied in glass fibres for optical amplification at 1.5 µm, presents an interesting transition for mid-IR applications around 4.5 µm (4I9/2→ 4I11/2). Thus, the aim of this work is to evaluate the Er3+-doped Ge20Ga5Sb10S65 glass as a potential fibre laser source operating in the 3-5 µm mid-IR spectral region. For that purpose, absorption and emission spectra were recorded from visible to mid-IR and the radiative lifetimes o…
Te-As-Se glass microstructured optical fiber for the middle infrared
International audience; We present the first fabrication, to the best of our knowledge, of chalcogenide microstructured optical fibers in Te-As-Se glass, their optical characterization, and numerical simulations in the middle infrared. In a first fiber, numerical simulations exhibit a single-mode behavior at 3.39 and 9.3 μm, in good agreement with experimental near-field captures at 9.3 μm. The second fiber is not monomode between 3.39 and 9.3 μm, but the fundamental losses are 9 dB/m at 3:39 μm and 6 dB/m at 9.3 μm. The experimental mode field diameters are compared to the theoretical ones with a good accordance.
Chalcogenide microstructured optical fibers : from linear to nonlinear properties
International audience; In this talk, we review the linear properties of chalcogenide microstructured optical fibers (MOFs) of several types. We mainly focus our talk on mid-infrared applications of such fibers. We start with the general properties of solid core MOFs made of these high index glasses and compare them with the ones of silica. Then, we give some details concerning a solid core MOF made of TAS glass. Next, we describe the first guiding suspended chalcogenide MOF and explain how it was designed for supercontinuum generation in the mid-infrared. Both linear and nonlinear properties of As2S3 suspended core MOFs are also numerically studied. In the next part, We describe the design…