0000000001290563

AUTHOR

Paul Arne ØStvær

Voisinages tubulaires épointés et homotopie stable à l'infini

We initiate a study of punctured tubular neighborhoods and homotopy theory at infinity in motivic settings. We use the six functors formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers…

research product

Stable motivic homotopy theory at infinity

In this paper, we initiate a study of motivic homotopy theory at infinity. We use the six functor formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under $\ell$-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers the singular complex at in…

research product

𝔸1-contractibility of affine modifications

We introduce Koras–Russell fiber bundles over algebraically closed fields of characteristic zero. After a single suspension, this exhibits an infinite family of smooth affine [Formula: see text]-contractible [Formula: see text]-folds. Moreover, we give examples of stably [Formula: see text]-contractible smooth affine [Formula: see text]-folds containing a Brieskorn–Pham surface, and a family of smooth affine [Formula: see text]-folds with a higher-dimensional [Formula: see text]-contractible total space.

research product

Milnor-Witt Motives

We develop the theory of Milnor-Witt motives and motivic cohomology. Compared to Voevodsky's theory of motives and his motivic cohomology, the first difference appears in our definition of Milnor-Witt finite correspondences, where our cycles come equipped with quadratic forms. This yields a weaker notion of transfers and a derived category of motives that is closer to the stable homotopy theory of schemes. We prove a cancellation theorem when tensoring with the Tate object, we compare the diagonal part of our Milnor-Witt motivic cohomology to Minor-Witt K-theory and we provide spectra representing various versions of motivic cohomology in the $\mathbb{A}^1$-derived category or the stable ho…

research product