dc transport in dissipative disordered one-dimensional systems
We present a numerical study of the dc transport properties of dissipative disordered chains which are described by linear ensembles of interconnected scatterers. The elastic-scattering amplitudes are derived from an Anderson Hamiltonian with diagonal (site) disorder. Inelastic scattering is accounted for by connecting the sites of the Anderson chain to separate external electron reservoirs. The calculated wave-vector-dependent transmission probabilities are discussed for chains with different lengths and for different degrees of dissipation. Using the Landauer-B\"uttiker approach we obtain the dc resistance of the considered samples. Our results demonstrate the rather intricate competition…