Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.
We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled ${\mathrm{Ba}}^{+}$ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.