0000000001291014

AUTHOR

Tommi Markkanen

showing 12 related works from this author

Spacetime curvature and Higgs stability after inflation

2015

We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the Standard Model only through the non-minimal gravitational coupling $\xi$ of the Higgs field. Such a coupling is required by renormalisation of the Standard Model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for $\xi\gtrsim 1$, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

General PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)spacetime curvaturePhysics MultidisciplinaryVacuum stateFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences09 Engineeringrenormalizationvacuum stateStandard ModelGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)vacuum stability0103 physical sciencesPARTICLE-PRODUCTIONELECTROWEAK VACUUMHiggs fieldHiggs particles010306 general physics01 Mathematical SciencesPlanck scalePhysicsInflation (cosmology)Science & Technology02 Physical SciencesQuantum field theory in curved spacetimeta114010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologyhep-phInflatonFIELDSThe Standard ModelCREATIONHiggs fieldHigh Energy Physics - PhenomenologyPhysical Sciencesastro-ph.COHiggs bosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Primordial dark matter from curvature induced symmetry breaking

2020

We demonstrate that adiabatic dark matter can be generated by gravity induced symmetry breaking during inflation. We study a $Z_2$ symmetric scalar singlet that couples to other fields only through gravity and for which the symmetry is broken by the spacetime curvature during inflation when the non-minimal coupling $\xi$ is negative. We find that the symmetry breaking leads to the formation of adiabatic dark matter with the observed abundance for the singlet mass $m\sim{\rm MeV}$ and $|\xi|\sim 1$.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterScalar (mathematics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsCurvature01 natural sciences114 Physical sciencessymmetry breakingGeneral Relativity and Quantum Cosmologypimeä aineGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesprimordial dark matterSymmetry breakinginflationAdiabatic processMathematical physicsPhysicsInflation (cosmology)symmetriadark matter theory010308 nuclear & particles physicsAstronomy and AstrophysicsCoupling (probability)Symmetry (physics)quantum field theory on curved spaceHigh Energy Physics - PhenomenologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Despicable dark relics: generated by gravity with unconstrained masses

2019

We demonstrate the existence of a generic, efficient and purely gravitational channel producing a significant abundance of dark relics during reheating after the end of inflation. The mechanism is present for any inert scalar with the non-minimal curvature coupling $\xi R\chi^2$ and the relic production is efficient for natural values $\xi = {\cal O}(1)$. The observed dark matter abundance can be reached for a broad range of relic masses extending from $m \sim 1 {\rm k eV}$ to $m \sim 10^{8} {\rm GeV}$, depending on the scale of inflation and the dark sector couplings. Frustratingly, such relics escape direct, indirect and collider searches since no non-gravitational couplings to visible ma…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)inationScalar (mathematics)Dark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCurvature01 natural sciencesGeneral Relativity and Quantum Cosmologylaw.inventionpimeä aineGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)law0103 physical sciencesinflationColliderkosminen inflaatioPhysicsInflation (cosmology)Couplingdark matter theory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsSCALAR-FIELD115 Astronomy Space science16. Peace & justicequantum field theory on curved spaceHigh Energy Physics - PhenomenologyProduction (computer science)kvanttikenttäteoriaMATTERAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Narrowing the window of inflationary magnetogenesis

2017

We consider inflationary magnetogenesis where the conformal symmetry is broken by the term $f^2(\phi) F_{\alpha\beta} F^{\alpha\beta}$. We assume that the magnetic field power spectrum today between 0.1 and $10^4$ Mpc is a power law, with upper and lower limits from observation. This fixes $f$ to be close to a power law in conformal time in the window during inflation when the modes observed today are generated. In contrast to previous work, we do not make any assumptions about the form of $f$ outside these scales. We cover all possible reheating histories, described by an average equation of state $-1/3 <\bar{w} <1$. Requiring that strong coupling and large backreaction are avoided both at…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcprimordial magnetic fieldsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesPower law114 Physical sciencesGeneral Relativity and Quantum CosmologyConformal symmetry0103 physical sciencesinflation010303 astronomy & astrophysicsSTFCST/L005573/1ComputingMilieux_MISCELLANEOUSInflation (cosmology)Physics[PHYS]Physics [physics]010308 nuclear & particles physicsEquation of state (cosmology)hep-thRCUKCONSTRAINTSAstronomy and Astrophysics115 Astronomy Space scienceMagnetic fieldOrders of magnitude (time)High Energy Physics - Theory (hep-th)Quantum electrodynamicsCOSMOLOGYSCALE MAGNETIC-FIELDSastro-ph.COBack-reactionST/K00090X/1Order of magnitudeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Dark matter from gravitational particle production at reheating

2015

We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses $m$ and non-minimal coupling values $\xi$. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for $m\sim 0.1$ GeV and $\xi \sim 1$. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

Inflation (cosmology)PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsNuclear TheoryDark matterScalar (mathematics)FOS: Physical sciencesAstronomy and AstrophysicsDecoupling (cosmology)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCurvature7. Clean energy01 natural sciencesUpper and lower boundsGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesParticle010306 general physicsNuclear ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The 1-loop effective potential for the Standard Model in curved spacetime

2018

The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…

High Energy Physics - TheoryDe Sitter spaceVacuum stateUNIVERSEfield theories in higher dimensionskosmologia01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)INFLATIONRADIATIVE-CORRECTIONSGauge theoryELECTROWEAK VACUUMMathematical physicsPhysics02 Physical SciencesPhysicshep-thhiukkasfysiikan standardimalliRENORMALIZATION-GROUP EQUATIONShep-phSPONTANEOUS SYMMETRY-BREAKINGNuclear & Particles PhysicsHigh Energy Physics - PhenomenologyHIGGS MASSPhysical SciencesGAUGE-THEORIESMathematics::Differential GeometryNuclear and High Energy Physicsgr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Curvatureclassical theories of gravityGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityfield theories in lower dimensions010306 general physics01 Mathematical SciencesInflation (cosmology)Science & TechnologySpacetimeSTABILITYta114010308 nuclear & particles physicsgravitaatioLoop (topology)High Energy Physics - Theory (hep-th)INTERACTING SCALAR FIELDlcsh:QC770-798Perturbation theory (quantum mechanics)Journal of High Energy Physics
researchProduct

Higgs-like spectator field as the origin of structure

2021

We show that the observed primordial perturbations can be entirely sourced by a light spectator scalar field with a quartic potential, akin to the Higgs boson, provided that the field is sufficiently displaced from vacuum during inflation. The framework relies on the indirect modulation of reheating, which is implemented without any direct coupling between the spectator field and the inflaton and does not require non-renormalisable interactions. The scenario gives rise to local non-Gaussianity with $f_{\rm NL}\simeq 5$ as the typical signal. As an example model where the indirect modulation mechanism is realised for the Higgs boson, we study the Standard Model extended with right-handed neu…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Field (physics)FOS: Physical sciencesQC770-798Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicskosmologia01 natural sciences7. Clean energy114 Physical sciencesPhysics Particles & FieldsStandard ModelHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. RadioactivityQuartic function0103 physical sciences0206 Quantum Physics010303 astronomy & astrophysicsEngineering (miscellaneous)kosminen inflaatioInflation (cosmology)PhysicsScience & Technology010308 nuclear & particles physicsPhysicsHiggsin bosoniHigh Energy Physics::Phenomenologyhiukkasfysiikan standardimallihep-phInflatonPERTURBATIONSNuclear & Particles PhysicsQB460-466High Energy Physics - Phenomenologykosminen taustasäteilyPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsastro-ph.COHiggs bosonNeutrinoScalar fieldAstrophysics - Cosmology and Nongalactic AstrophysicsThe European Physical Journal C
researchProduct

Novel mechanism for primordial perturbations in minimal extensions of the Standard Model

2020

Abstract We demonstrate that light spectator fields in their equilibrium can source sizeable CMB anisotropies through modulated reheating even in the absence of direct couplings to the inflaton. The effect arises when the phase space of the inflaton decay is modulated by the spectator which generates masses for the decay products. We call the mechanism indirect modulation and using the stochastic eigenvalue expansion show that it can source perturbations even four orders of magnitude larger than the observed amplitude. Importantly, the indirect mechanism is present in the Standard Model extended with right- handed neutrinos. For a minimally coupled Higgs boson this leads to a novel lower bo…

Nuclear and High Energy PhysicsParticle physicsHiggs Physicshiukkasfysiikka114 Physical sciences01 natural sciencesUpper and lower boundsPhysics Particles & FieldsStandard Model0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicscosmology of theories beyond the SM0206 Quantum PhysicsPhysicsScience & Technology0105 Mathematical Physics010308 nuclear & particles physicsHiggsin bosoniPhysicshep-thHigh Energy Physics::PhenomenologyHiggs physicshep-phInflatonCosmology of Theories beyond the SMNuclear & Particles PhysicsAmplitudeOrders of magnitude (time)Phase spacePhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsastro-ph.COHiggs bosonlcsh:QC770-798NeutrinoJournal of High Energy Physics
researchProduct

Renormalisation group improvement in the stochastic formalism

2019

We investigate compatibility between the stochastic infrared (IR) resummation of light test fields on inflationary spacetimes and renormalisation group running of the ultra-violet (UV) physics. Using the Wilsonian approach, we derive improved stochastic Langevin and Fokker-Planck equations which consistently include the renormalisation group effects. With the exception of stationary solutions, these differ from the naive approach of simply replacing the classical potential in the standard stochastic equations with the renormalisation group improved potential. Using this new formalism, we exemplify the IR dynamics with the Yukawa theory during inflation, illustrating the differences between …

High Energy Physics - TheoryGAUGED NJL-MODELgr-qcHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)PROPAGATORFLATNESSHORIZON0201 Astronomical and Space Sciences0103 physical sciencesphysics of the early universeinflationINFLATIONARY UNIVERSE SCENARIOResummationMathematical physicsPhysicsScience & Technology010308 nuclear & particles physicsPhysicshep-thYukawa potentialhep-phAstronomy and AstrophysicsEXPANSIONNuclear & Particles Physicsquantum field theory on curved spaceFormalism (philosophy of mathematics)High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)particle physics - cosmology connectionINTERACTING SCALAR FIELDVACUUMPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicsPHASE-TRANSITIONGENERATION
researchProduct

Elaborointi englannin kielen oppimisen apuna 5.-6. luokilla

1999

researchProduct

Novel mechanism for CMB modulation in the Standard Model

2020

We demonstrate that light spectator fields can source sizeable CMB anisotropies through modulated reheating even in the absence of direct couplings to the inflaton. The effect arises when the phase space of the inflaton decay is modulated by the spectator which generates masses for the decay products. We call the mechanism \textit{indirect modulation} and show that it can source perturbations even four orders of magnitude larger than the observed. Importantly, the indirect mechanism is present in the Standard Model extended with right-handed neutrinos. For a minimally coupled Higgs boson this leads to a novel lower bound on the quartic coupling and constrains the neutrino Yukawas below unit…

High Energy Physics - TheoryHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics - Theory (hep-th)High Energy Physics::PhenomenologyFOS: Physical sciencesAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Do metric fluctuations affect the Higgs dynamics during inflation?

2017

We show that the dynamics of the Higgs field during inflation is not affected by metric fluctuations if the Higgs is an energetically subdominant light spectator. For Standard Model parameters we find that couplings between Higgs and metric fluctuations are suppressed by $\mathcal{O}(10^{-7})$. They are negligible compared to both pure Higgs terms in the effective potential and the unavoidable non-minimal Higgs coupling to background scalar curvature. The question of the electroweak vacuum instability during high energy scale inflation can therefore be studied consistently using the Jordan frame action in a Friedmann--Lema\^itre--Robertson--Walker metric, where the Higgs-curvature coupling …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcSTANDARD MODELFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGeneral Relativity and Quantum Cosmology0202 Atomic Molecular Nuclear Particle And Plasma PhysicsHigh Energy Physics - Phenomenology (hep-ph)EINSTEIN FRAMESELECTROWEAK VACUUMFIELDquantumfield theory on curved spaceScience & TechnologyPhysicsHigh Energy Physics::Phenomenologyhep-phNuclear & Particles PhysicsJORDANHigh Energy Physics - Phenomenology0201 Astronomical And Space SciencesMETASTABILITYparticle physics - cosmology connectionPhysical Sciencesastro-ph.COHigh Energy Physics::ExperimentEQUIVALENCEAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct