Global Cropland Yield Monitoring with Gaussian Processes
Agriculture monitoring, and in particular food security, requires near real-time information on crop growing conditions for early detection of possible production deficits. In this work, we propose the use of Gaussian processes (GPs). together with in-situ, EO and ERA-Interim climate reanalysis data for crop yield forecasting. Country-level agricultural survey data from FAOSTAT are used for quantitative assessment. The study is conducted in the framework of the ASAP (Anomaly hot Spots of Agricultural Production) early warning decision support system of the European Commission, which aims at providing timely information about possible crop production anomalies worldwide. After grouping count…