0000000001295729

AUTHOR

Lizaveta Ihnatsyeva

Smoothness spaces of higher order on lower dimensional subsets of the Euclidean space

We study Sobolev type spaces defined in terms of sharp maximal functions on Ahlfors regular subsets of R n and the relation between these spaces and traces of classical Sobolev spaces. This extends in a certain way the results of Shvartsman (20) to the case of lower dimensional subsets of the Euclidean space.

research product

On improved fractional Sobolev–Poincaré inequalities

We study a certain improved fractional Sobolev–Poincaré inequality on domains, which can be considered as a fractional counterpart of the classical Sobolev–Poincaré inequality. We prove the equivalence of the corresponding weak and strong type inequalities; this leads to a simple proof of a strong type inequality on John domains. We also give necessary conditions for the validity of an improved fractional Sobolev–Poincaré inequality, in particular, we show that a domain of finite measure, satisfying this inequality and a ‘separation property’, is a John domain.

research product

Fractional Hardy inequalities and visibility of the boundary

We prove fractional order Hardy inequalities on open sets under a combined fatness and visibility condition on the boundary. We demonstrate by counterexamples that fatness conditions alone are not sufficient for such Hardy inequalities to hold. In addition, we give a short exposition of various fatness conditions related to our main result, and apply fractional Hardy inequalities in connection to the boundedness of extension operators for fractional Sobolev spaces.

research product

Muckenhoupt $A_p$-properties of distance functions and applications to Hardy-Sobolev -type inequalities

Let $X$ be a metric space equipped with a doubling measure. We consider weights $w(x)=\operatorname{dist}(x,E)^{-\alpha}$, where $E$ is a closed set in $X$ and $\alpha\in\mathbb R$. We establish sharp conditions, based on the Assouad (co)dimension of $E$, for the inclusion of $w$ in Muckenhoupt's $A_p$ classes of weights, $1\le p<\infty$. With the help of general $A_p$-weighted embedding results, we then prove (global) Hardy-Sobolev inequalities and also fractional versions of such inequalities in the setting of metric spaces.

research product