Adatom Island Diffusion on Metal Fcc(100) Surfaces
We study the energetics and atomic mechanisms of diffusion of adatom islands on fcc(100) metal surfaces. For small islands, we perform detailed microscopic calculations using semi-empirical embedded-atom model and glue potentials in the case of Cu and Al, respectively. Combining systematic saddle-point search methods and molecular statics simulations allows us to find all the relevant transition paths for island motion. In particular, we demonstrate that there are novel many-body mechanisms such as internal row shearing which can, in some cases, control the island dynamics. Next, we show how using the master equation formalism, diffusion coefficients for small islands up to about five atoms…