0000000001299335
AUTHOR
Tamás Földes
Stereocontrol in Diphenylprolinol Silyl Ether Catalyzed Michael Additions : Steric Shielding or Curtin-Hammett Scenario?
The enantioselectivity of amine-catalyzed reactions of aldehydes with electrophiles is often explained by simple steric arguments emphasizing the role of the bulky group of the catalyst that prevents the approach of the electrophile from the more hindered side. This standard steric shielding model has recently been challenged by the discovery of stable downstream intermediates, which appear to be involved in the rate-determining step of the catalytic cycle. The alternative model, referred to as Curtin-Hammett scenario of stereocontrol, assumes that the enantioselectivity is related to the stability and reactivity of downstream intermediates. In our present computational study, we examine th…
Carboxylate catalyzed isomerization of β,γ‐unsaturated N-acetylcysteamine thioesters
We demonstrate herein the capacity of simple carboxylate salts – tetrametylammonium and tetramethylguanidinium pivalate – to act as catalysts in the isomerization of β,γ-unsaturated thioesters to α,β-unsaturated thioesters. The carboxylate catalysts gave reaction rates comparable to those obtained with DBU, but with fewer side reactions. The reaction exhibits a normal secondary kinetic isotope effect ( k 1H / k 1D = 1.065±0.026) with a β,γ−deuterated substrate. Computational analysis of the mechanism provides a similar value ( k 1H / k 1D = 1.05) with a mechanism where γ-reprotonation of the enolate intermediate is rate determining. peerReviewed
Organocatalysts Fold to Generate an Active Site Pocket for the Mannich Reaction
Catalysts containing urea, thiourea and tertiary amine groups fold into a three-dimensional organized structure in solution both in the absence as well as in the presence of substrates or substrate analogues, as indicated by solution NMR and computational studies. These foldamer catalysts promote Mannich reactions with both aliphatic and aromatic imines and malonate esters. Hammett plot and secondary kinetic isotope effects provide evidence for the C-C bond forming event as the turnoverlimiting step of the Mannich reaction. Computational studies suggest two viable pathways for the C-C bond formation step, differing in the activation modes of the malonate and imine substrates. The results sh…
Dynamic Refolding of Ion-Pair Catalysts in Response to Different Anions.
Four distinct folding patterns were identified in two foldamer-type urea-thiourea catalysts bearing a basic dimethylamino unit by a combination of X-ray crystallography, solution NMR studies, and computational studies (DFT). These patterns are characterized by different intramolecular hydrogen bonding schemes that arise largely from different thiourea conformers. The free base forms of the catalysts are characterized by folds where the intramolecular hydrogen bonds between the urea and the thiourea units remain intact. In contrast, the catalytically relevant salt forms of the catalyst, where the catalyst forms an ion pair with the substrate or substrate analogues, appear in two entirely dif…
CCDC 1901894: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1901892: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1556565: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Tamás Földes, Ádám Madarász, Imre Pápai, and Petri M. Pihko|2017|ACS Catalysis|7|3284|doi:10.1021/acscatal.7b00336
CCDC 1901895: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1901899: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1901897: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1901898: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1901893: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1901896: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980