0000000001299387
AUTHOR
Marta Viciano-chumillas
σ-Hammett parameter: a strategy to enhance both photo- and electro-luminescence features of heteroleptic copper(i) complexes
This work studies the effect of the σ-Hammett parameter (σp) – i.e., the σ-donation effect caused by substitution at the para position of a bipyridine ligand (4,4′-R2bipy, where R is MeO, Me, H, NO2) – on both the photo- and electro-luminescence features of a series of heteroleptic copper(I) complexes – i.e., [Cu(N^N)(P^P)]+ where N^N and P^P ligands are R2bipy and Xantphos, respectively. By virtue of a comprehensive photophysical, theoretical, and thin-film lighting device – i.e., light-emitting electrochemical cells (LECs) – investigation, we note a clear relationship between the σp and the photo- and electro-luminescence parameters, such as photoluminescence quantum yields, excited-state…
Functionalisation of MoS2 2D layers with diarylethene molecules
Functionalisation of two dimensional (2D) materials with stimuli-responsive molecules has been scarcely investigated. Here, MoS2 layers obtained by chemical exfoliation are covalently and non-covalently functionalised using two photoswitchable diarylethene derivatives under their open- and closed-ring isomers. The choice of these light-responsive molecules is based on their excellent thermal irreversibility and fatigue resistance. The characterisation of the resultant molecular/2D heterostructures proves the successful anchoring of the molecules by both approaches as well as the influence that the driving interaction has in the photoswitching behaviour of the diarylethene isomers after thei…
Multivariate Metal-Organic Frameworks for the Simultaneous Capture of Organic and Inorganic Contaminants from Water
We report a new water-stable multivariate (MTV) Metal-Organic Framework (MOF) prepared by combining two different oxamide-based metalloligands derived from the natural amino acids L-serine and L-methionine. This unique material features hexagonal channels decorated with two types of flexible and functional 'arms' (-CH2OH and -CH2CH2SCH3) capable to act, synergistically, for the simultaneous and efficient removal of both inorganic (heavy metals like Hg2+, Pb2+ and Tl+) and organic (dyes such as Pyronin Y, Auramine O, Brilliant Green and Methylene Blue) contaminants and, in addition, this MTV-MOF is completely reusable. Single-crystal X-ray diffraction (SCXRD) measurements allowed to solve th…
Coligand Effects on the Field-Induced Double Slow Magnetic Relaxation in Six-Coordinate Cobalt(II) Single-Ion Magnets (SIMs) with Positive Magnetic Anisotropy.
Two mononuclear cobalt(II) compounds of formula [Co(dmphen)2(OOCPh)]ClO4·1/2H2O·1/2CH3OH (1) and [Co(dmbipy)2(OOCPh)]ClO4 (2) (dmphen = 2,9-dimethyl-1,10-phenanthroline, dmbipy = 6,6'-dimethyl-2,2'-bipyridine and HOOCPh = benzoic acid) are prepared and magnetostructurally investigated. Each cobalt(II) ion is six-coordinate with a distorted octahedral CoN4O2 environment. The complex cations are interlinked leading to supramolecular chains (1) and pairs (2) that grow along the crystallographic c-axis with racemic mixtures of (Δ,Λ)-Co units. FIRMS allowed us to directly measure the zero-field splitting between the two lowest Kramers doublets, which led to axial anisotropy values of 58.3 cm-1 ≤…
Reversible solvatomagnetic switching in a single-ion magnet from an entatic state
We have developed a new strategy for the design and synthesis of multifunctional molecular materials showing reversible magnetic and optical switching.
Influence of Xantphos Derivative Ligands on the Coordination in Their Copper(I) and Silver(I) Complexes
Photoluminescent Cu(i) vs. Ag(i) complexes: slowing down emission in Cu(i) complexes by pentacoordinate low-lying excited states.
This work describes the synthesis, and structural, spectroscopic, and theoretical studies of a mononuclear silver(i) complex with the formula [Ag(Xantphos)(4,4'-(MeO)2-2,2'-bipy)]BF4·DCM (1·BF4) [Xantphos: 4,5-bis(diphenylphosphino)-9,9'-dimethylxanthene]. We provide meaningful insights into the enhancement of the photoluminescence features of this silver(i) complex compared to its copper(i) analogue.
Zinc(ii), cobalt(ii) and manganese(ii) networks with phosphoserine ligand: synthesis, crystal structures and magnetic and proton conductivity properties
A series of zinc(II), cobalt(II) and manganese(II) coordination networks with phosphoserine ligand (H3PSer) are synthesized and characterized. Whereas in compounds 1 and 2 with the general formula [M(HPser)]n [M = Zn (1) and Co (2)], the metal(II) ion presents a tetrahedral geometry, in [Co(HPSer)(H2O)2]n (3) and [Mn(HPSer)(H2O)]n (4), the metal(II) ions are in a distorted octahedral geometry. The 3D frameworks are formed by inorganic layers built up from MO4 or MO6 polyhedra and phosphate groups. These layers are linked by the carboxylate groups of the phosphoserine ligand. The presence of extended hydrogen bonding stabilizes the 3D network and favours the proton transfer leading to modera…
Deciphering the Electroluminescence Behavior of Silver(I)‐Complexes in Light‐Emitting Electrochemical Cells: Limitations and Solutions toward Highly Stable Devices
Cyanide-bridged coordination polymers constructed from lanthanide ions and octacyanometallate building-blocks
A new series of cyanide-bridged assemblies, {KH[Ln2(2,3-pzdc)2(CH3OH)(H2O)7][M(CN)8]}·5H2O (Ln3+ = Nd, Gd, Tb, and Dy; M4+ = Mo and W), were synthesised by self-assembling lanthanide ions and octacyanometallate ions in the presence of pyrazine-2,3-dicarboxylic acid (2,3-H2pzdc). These compounds have a 3D structure in which octagon-like Ln4M4(CN)8 rings are connected through a second Ln3+ center via the carboxylate groups of one 2,3-pzdc. The resulting 1D channels are filled with K+ ions and lattice water molecules. The temperature and field dependent magnetization studies as well as ab initio calculations indicate weak ferromagnetic interactions between the Gd3+ ions within the GdMo compoun…
Photodegradation of Brilliant Green Dye by a Zinc bioMOF and Crystallographic Visualization of Resulting CO2
We present a novel bio-friendly water-stable Zn-based MOF (1), derived from the natural amino acid L-serine, which was able to efficiently photodegrade water solutions of brilliant green dye in only 120 min. The total degradation was followed by UV-Vis spectroscopy and further confirmed by single-crystal X-ray crystallography, revealing the presence of CO2 within its channels. Reusability studies further demonstrate the structural and performance robustness of 1.
Mixed component metal-organic frameworks: Heterogeneity andcomplexity at the service of application performances
The synthesis of mixed-component metal-organic frameworks (MOFs) –including multivariate MOFs (MTV-MOFs), multicomponent MOFs, mixed-metals MOFs and mixed-ligands and metals MOFs– is becoming a very active research field. This is mainly based on the unique possibilities these materials offer to incorporate multiple functionalities and in how this heterogenity and complexity is translated in unexpected properties, which are not just the sum of each component. This review critically encompasses the progress made in this field, covering the synthetic approaches, and specially focusing on the current reported applications –such as gas storage and separation, catalysis, luminescence, conductivit…
.Single-Ion Magnetic Behaviour in an Iron(III) Porphyrin Complex: A Dichotomy Between High Spin and 5/2-3/2 Spin Admixture
International audience; A mononuclear iron(III) porphyrin compound exhibiting unexpectedly slow magnetic relaxation, which is a characteristic of single-ion magnet behaviour, is reported. This behaviour originates from the close proximity (approximate to 550 cm(-1)) of the intermediate-spinS=3/2 excited states to the high-spinS=5/2 ground state. More quantitatively, although the ground state is mostlyS=5/2, a spin-admixture model evidences a sizable contribution (approximate to 15 %) ofS=3/2 to the ground state, which as a consequence experiences large and positive axial anisotropy (D=+19.2 cm(-1)). Frequency-domain EPR spectroscopy allowed them(S)= |+/- 1/2⟩->|+/- 3/2&Rig…
[Cr(dmbipy)(ox)2]−: a new bis-oxalato building block for metal assembling. Crystal structures and magnetic properties of XPh4[Cr(dmbipy)(ox)2]·5H2O (X = P and As), {Ba(H2O)2[Cr(dmbipy)(ox)2]2}n·17/2nH2O and {Ag(H2O)[Cr(dmbipy)(ox)2]}n·3nH2O
The synthesis, X-ray structure and variable-temperature magnetic study of new compounds of formula PPh4[Cr(dmbipy)(ox)2]·5H2O (1), AsPh4[Cr(dmbipy)(ox)2]·5H2O (2), {Ba(H2O)2[Cr(dmbipy)(ox)2]2}n·17/2nH2O (3) and {Ag(H2O)[Cr(dmbipy)(ox)2]}n·3nH2O (4) (PPh4+ = tetraphenylphosphonium cation; AsPh4+ = tetraphenylarsonium cation; dmbipy = 4,4′-dimethyl-2,2′-bipyridine; ox2− = oxalate dianion) are reported herein. The isomorphous compounds 1 and 2 are made up of discrete [Cr(dmbipy)(ox)2]− anions, XPh4+ cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr–O and Cr–N bond distances varying in the ranges 1.950(2)–1.9782…
Field-induced slow magnetic relaxation in mixed valence di- and tri-nuclear CoII–CoIII complexes
Two novel mixed valence CoII–CoIII complexes, namely [CoIICoIII(L1)(ab)(mb)2(H2O)]·dmf (1) and [CoIII2CoII(L2)4(H2O)4]·2H2O (2) [H2L1 = (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol, ab = 2-amino-butan-1-ol anion, mb = p-methyl benzoate, H2L2 = 3-((2-hydroxy-3-methoxy-benzylidene)-amino)-propionic acid, and dmf = N,N-dimethyl-formamide], were synthesized and characterized by single crystal X-ray diffraction and magnetic studies at low temperature. The structure determination reveals that both complexes belong to the monoclinic system with P21/c (1) and I2/a (2) space groups. Complex 1 is a dinuclear CoIIICoII compound with distorted octahedral cobalt centers showing different coo…
Metal-Organic Frameworks as Chemical Nanoreactors: Synthesis and Stabilization of Catalytically Active Metal Species in Confined Spaces
ConspectusSince the advent of the first metal-organic frameworks (MOFs), we have witnessed an explosion of captivating architectures with exciting physicochemical properties and applications in a wide range of fields. This, in part, can be understood under the light of their rich host-guest chemistry and the possibility to use single-crystal X-ray diffraction (SC-XRD) as a basic characterization tool. Moreover, chemistry on preformed MOFs, applying recent developments in template-directed synthesis and postsynthetic methodologies (PSMs), has shown to be a powerful synthetic tool to (i) tailor MOFs channels of known topology via single-crystal to single-crystal (SC-SC) processes, (ii) impart…
CCDC 1536659: Experimental Crystal Structure Determination
Related Article: Aparup Paul, Marta Viciano-Chumillas, Horst Puschmann, Joan Cano, Subal Chandra Manna|2020|Dalton Trans.|49|9516|doi:10.1039/D0DT00588F
CCDC 1914220: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Marta Viciano-Chumillas, Francisco Lloret, Miguel Julve, Isabel Castro, J. Krzystek, Mykhaylo Ozerov, Donatella Armentano, Giovanni De Munno, Joan Cano|2019|Inorg.Chem.|58|15726|doi:10.1021/acs.inorgchem.9b01719
CCDC 1898878: Experimental Crystal Structure Determination
Related Article: Marta Viciano-Chumillas, Jos�� M. Carbonell-Vilar, Donatella Armentano, Joan Cano|2019|Eur.J.Inorg.Chem.|2019|2982|doi:10.1002/ejic.201900323
CCDC 1897433: Experimental Crystal Structure Determination
Related Article: José M. Carbonell-Vilar, Elisa Fresta, Donatella Armentano, Rubén D. Costa, Marta Viciano-Chumillas, Joan Cano|2019|Dalton Trans.|48|9765|doi:10.1039/C9DT00772E
CCDC 1977640: Experimental Crystal Structure Determination
Related Article: Aparup Paul, Marta Viciano-Chumillas, Horst Puschmann, Joan Cano, Subal Chandra Manna|2020|Dalton Trans.|49|9516|doi:10.1039/D0DT00588F
CCDC 1898877: Experimental Crystal Structure Determination
Related Article: Marta Viciano-Chumillas, Jos�� M. Carbonell-Vilar, Donatella Armentano, Joan Cano|2019|Eur.J.Inorg.Chem.|2019|2982|doi:10.1002/ejic.201900323
CCDC 2062290: Experimental Crystal Structure Determination
Related Article: Paula Escamilla, Marta Viciano-Chumillas, Rosaria Bruno, Donatella Armentano, Emilio Pardo, Jesús Ferrando-Soria|2021|Molecules|26|4098|doi:10.3390/molecules26134098
CCDC 2062289: Experimental Crystal Structure Determination
Related Article: Paula Escamilla, Marta Viciano-Chumillas, Rosaria Bruno, Donatella Armentano, Emilio Pardo, Jesús Ferrando-Soria|2021|Molecules|26|4098|doi:10.3390/molecules26134098
CCDC 1872265: Experimental Crystal Structure Determination
Related Article: Marta Viciano-Chumillas, Geneviève Blondin, Martin Clémancey, Jurek Krzystek, Mykhaylo Ozerov, Donatella Armentano, Alexander Schnegg, Thomas Lohmiller, Joshua Telser, Francesc Lloret, Joan Cano|2020|Chem.-Eur.J.|26|14242|doi:10.1002/chem.202003052
CCDC 1898876: Experimental Crystal Structure Determination
Related Article: Marta Viciano-Chumillas, Jos�� M. Carbonell-Vilar, Donatella Armentano, Joan Cano|2019|Eur.J.Inorg.Chem.|2019|2982|doi:10.1002/ejic.201900323
CCDC 1898875: Experimental Crystal Structure Determination
Related Article: Marta Viciano-Chumillas, Jos�� M. Carbonell-Vilar, Donatella Armentano, Joan Cano|2019|Eur.J.Inorg.Chem.|2019|2982|doi:10.1002/ejic.201900323
CCDC 1522134: Experimental Crystal Structure Determination
Related Article: Michael D. Weber, Marta Viciano-Chumillas, Donatella Armentano, Joan Cano, Rubén D. Costa|2017|Dalton Trans.|46|6312|doi:10.1039/C7DT00810D
CCDC 1522132: Experimental Crystal Structure Determination
Related Article: Michael D. Weber, Marta Viciano-Chumillas, Donatella Armentano, Joan Cano, Rubén D. Costa|2017|Dalton Trans.|46|6312|doi:10.1039/C7DT00810D
CCDC 1914219: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Marta Viciano-Chumillas, Francisco Lloret, Miguel Julve, Isabel Castro, J. Krzystek, Mykhaylo Ozerov, Donatella Armentano, Giovanni De Munno, Joan Cano|2019|Inorg.Chem.|58|15726|doi:10.1021/acs.inorgchem.9b01719
CCDC 1522135: Experimental Crystal Structure Determination
Related Article: Michael D. Weber, Marta Viciano-Chumillas, Donatella Armentano, Joan Cano, Rubén D. Costa|2017|Dalton Trans.|46|6312|doi:10.1039/C7DT00810D
CCDC 1818714: Experimental Crystal Structure Determination
Related Article: Yuan Gao, Marta Viciano-Chumillas, Ana Maria Toader, Simon J. Teat, Marilena Ferbinteanu, Stefania Tanase|2018|Inorg.Chem.Front.|5|1967|doi:10.1039/C8QI00357B
CCDC 1898874: Experimental Crystal Structure Determination
Related Article: Marta Viciano-Chumillas, Jos�� M. Carbonell-Vilar, Donatella Armentano, Joan Cano|2019|Eur.J.Inorg.Chem.|2019|2982|doi:10.1002/ejic.201900323
CCDC 1522133: Experimental Crystal Structure Determination
Related Article: Michael D. Weber, Marta Viciano-Chumillas, Donatella Armentano, Joan Cano, Rubén D. Costa|2017|Dalton Trans.|46|6312|doi:10.1039/C7DT00810D