0000000001299472

AUTHOR

Kalle Kolari

showing 14 related works from this author

Metallophilic interactions in polymeric group 11 thiols

2016

Three polymeric group 11 transition metal polymers featuring metallophilic interactions were obtained directly via self-assembly of metal ions and 4-pyridinethiol ligands. In the cationic [Cu2(S-pyH)4]n2+ with [ZnCl4]n2− counterion (1) and in the neutral [Ag(S-py) (S-pyH)]n (2) 4-pyridinethiol (S-pyH) and its deprotonated form (S-py) are coordinated through the sulfur atom. Both ligands are acting as bridging ligands linking the metal centers together. In the solid state, the gold(I) polymer [Au(S-pyH)2]Cl (3) consists of the repeating cationic [Au(S-pyH)2]+ units held together by aurophilic interactions. Compound 1 is a zig-zag chain, whereas the metal chains in the structures of 2 and 3 a…

Crystallization of polymersInorganic chemistryProtonationAg010402 general chemistry01 natural sciencessymbols.namesakeTransition metalAuGeneral Materials ScienceVan der Waals radiusta116Cuchemistry.chemical_classification4-pyridinethiolmetallophilic interactions010405 organic chemistryLigandCationic polymerizationGeneral ChemistryCondensed Matter Physics0104 chemical sciencesCrystallographychemistryPolymerizationsymbolsCounterionSolid State Sciences
researchProduct

Fabrication of Porous Hydrogenation Catalysts by a Selective Laser Sintering 3D Printing Technique

2019

Open in a separate window Three-dimensional selective laser sintering printing was utilized to produce porous, solid objects, in which the catalytically active component, Pd/SiO2, is attached to an easily printable supporting polypropylene framework. Physical properties of the printed objects, such as porosity, were controlled by varying the printing parameters. Structural characterization of the objects was performed by helium ion microscopy, scanning electron microscopy, and X-ray tomography, and the catalytic performance of the objects was tested in the hydrogenation of styrene, cyclohexene, and phenylacetylene. The results show that the selective laser sintering process provides an alte…

FabricationMaterials sciencelaser sintering printingGeneral Chemical EngineeringCyclohexene3D printingfabrication02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyArticleCatalysislaw.inventionlcsh:Chemistryhuokoisuuschemistry.chemical_compoundkatalyytitlaw3D-tulostushydrogenation catalystsPorosityPolypropylenebusiness.industry3D printingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)Selective laser sinteringchemistryChemical engineeringlcsh:QD1-9990210 nano-technologybusinessACS Omega
researchProduct

Self-assembly of square planar rhodium carbonyl complexes with 4,4-disubstituted-2,2′-bipyridine ligands

2020

The impact of non-covalent interactions and reaction conditions on formation and self-assembly of ionic pairs of Rh complexes with 4,4’-disubstituted bipyridine ligands ([Rh(L1)(CO)2][Rh(CO)2Cl2])n (1), [Rh(L1)2Cl2][Rh(CO)2Cl2] (2), ([Rh(L1)(CO)2][Rh(CO)2Cl2][Rh(L1)(CO)2]n([Rh(CO)2(Cl)2])n) (3), ([Rh(L2)CO2] [Rh(CO)2Cl2])n∙EtOH (4), ([Rh(L2)(CO)2])n ([Rh(CO)2Cl2])n (5) (L1 = 4,4’-dimethyl-2,2’-bipyridine, L2 = 4,4’-diamine-2,2’-bipyridine) have been studied. Packing of square planar Rh complexes favor formation of one-dimensional chains. In structure 1, the polymeric chain is formed by the alternating cationic [Rh(L1)(CO)2]+ and the anionic [Rh(CO)2Cl2]- units leading to a neutral pseudo li…

reductive carbonylationchemistry.chemical_elementIonic bonding02 engineering and technology010402 general chemistry01 natural sciences22'-BipyridineRhodiumchemistry.chemical_compoundBipyridineGeneral Materials Sciencemetallophilicitychemistry.chemical_classificationLigandHydrogen bondCationic polymerizationcarbonylGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCrystallographybipyridinechemistryrhodiumCounterion0210 nano-technologySolid State Sciences
researchProduct

Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine–fluorine interactions

2020

Square planar platinum(ii) complexes are attractive building blocks for multifunctional soft materials due to their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels derived from platinum(ii) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single crystal X-ray diffraction studies, we show that the presence of synergistic platinum-platinum (PtMIDLINE HORIZONTAL ELLIPSISPt) metallopolymerization and f…

platinaMaterials sciencechemistry.chemical_element010402 general chemistry01 natural sciencesMetalchemistry.chemical_compoundpolymeeritAlkylgeelitchemistry.chemical_classification010405 organic chemistryluminesenssikompleksiyhdisteetGeneral ChemistryDynamic mechanical analysisCondensed Matter Physicsfluorifysikaaliset ominaisuudet0104 chemical scienceschemistryChemical engineeringvisual_artFluorinevisual_art.visual_art_mediumTerpyridinePlatinumLuminescenceSingle crystal
researchProduct

CCDC 1406016: Experimental Crystal Structure Determination

2016

Related Article: Kalle Kolari, Joona Sahamies, Elina Kalenius, Alexander S. Novikov, Vadim Yu Kukushkin, Matti Haukka|2016|Solid State Sciences|60|92|doi:10.1016/j.solidstatesciences.2016.08.005

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-pyridine-4-thiolato)-(mu-pyridine-4(1H)-thione)-silver(i))Experimental 3D Coordinates
researchProduct

CCDC 1935019: Experimental Crystal Structure Determination

2020

Related Article: Kalle Kolari, Elina Laurila, Maria Chernysheva, Pipsa Hirva, Matti Haukka|2020|Solid State Sciences|100|106103|doi:10.1016/j.solidstatesciences.2019.106103

Space GroupCrystallographyCrystal Systemdichloro-bis(44'-dimethyl-22'-bipyridine)-rhodium dicarbonyl-(dichloro)-rhodiumCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1949029: Experimental Crystal Structure Determination

2020

Related Article: Kalle Kolari, Evgeny Bulatov, Rajendhraprasad Tatikonda, Kia Bertula, Elina Kalenius, Nonappa, Matti Haukka|2020|Soft Matter|16|2795|doi:10.1039/C9SM02186H

chloro-{4'-[(4455667788991010111111-heptadecafluoroundecyl)oxy]-22':6'2''-terpyridine}-platinum(ii) chloride ethanol solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1406018: Experimental Crystal Structure Determination

2016

Related Article: Kalle Kolari, Joona Sahamies, Elina Kalenius, Alexander S. Novikov, Vadim Yu Kukushkin, Matti Haukka|2016|Solid State Sciences|60|92|doi:10.1016/j.solidstatesciences.2016.08.005

Space GroupCrystallographyCrystal Systemcatena-[tetrakis(mu-pyridine-4(1H)-thione)-di-copper tetrachloro-zinc ethanol solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1949030: Experimental Crystal Structure Determination

2020

Related Article: Kalle Kolari, Evgeny Bulatov, Rajendhraprasad Tatikonda, Kia Bertula, Elina Kalenius, Nonappa, Matti Haukka|2020|Soft Matter|16|2795|doi:10.1039/C9SM02186H

Space GroupCrystallographychloro-[4'-(dodecyloxy)-22':6'2''-terpyridine]-platinum(ii) chloride ethanol solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1406017: Experimental Crystal Structure Determination

2016

Related Article: Kalle Kolari, Joona Sahamies, Elina Kalenius, Alexander S. Novikov, Vadim Yu Kukushkin, Matti Haukka|2016|Solid State Sciences|60|92|doi:10.1016/j.solidstatesciences.2016.08.005

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(Pyridine-4(1H)-thionato)-gold(i) chlorideExperimental 3D Coordinates
researchProduct

CCDC 1935022: Experimental Crystal Structure Determination

2020

Related Article: Kalle Kolari, Elina Laurila, Maria Chernysheva, Pipsa Hirva, Matti Haukka|2020|Solid State Sciences|100|106103|doi:10.1016/j.solidstatesciences.2019.106103

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters([22'-bipyridine]-44'-diamine)-(dicarbonyl)-rhodium dicarbonyl-(dichloro)-rhodium ethanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1935020: Experimental Crystal Structure Determination

2020

Related Article: Kalle Kolari, Elina Laurila, Maria Chernysheva, Pipsa Hirva, Matti Haukka|2020|Solid State Sciences|100|106103|doi:10.1016/j.solidstatesciences.2019.106103

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdicarbonyl-(44'-dimethyl-22'-bipyridine)-rhodium dicarbonyl-dichloro-rhodiumExperimental 3D Coordinates
researchProduct

CCDC 1935018: Experimental Crystal Structure Determination

2020

Related Article: Kalle Kolari, Elina Laurila, Maria Chernysheva, Pipsa Hirva, Matti Haukka|2020|Solid State Sciences|100|106103|doi:10.1016/j.solidstatesciences.2019.106103

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdicarbonyl-(44'-dimethyl-22'-bipyridine)-rhodium dicarbonyl-dichloro-rhodiumExperimental 3D Coordinates
researchProduct

CCDC 1935021: Experimental Crystal Structure Determination

2020

Related Article: Kalle Kolari, Elina Laurila, Maria Chernysheva, Pipsa Hirva, Matti Haukka|2020|Solid State Sciences|100|106103|doi:10.1016/j.solidstatesciences.2019.106103

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters([22'-bipyridine]-44'-diamine)-(dicarbonyl)-rhodium dicarbonyl-(dichloro)-rhodiumExperimental 3D Coordinates
researchProduct