6533b837fe1ef96bd12a2a38

RESEARCH PRODUCT

Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine–fluorine interactions

Kia BertulaElina KaleniusRajendhraprasad TatikondaMatti HaukkaEvgeny BulatovKalle KolariNonappa

subject

platinaMaterials sciencechemistry.chemical_element010402 general chemistry01 natural sciencesMetalchemistry.chemical_compoundpolymeeritAlkylgeelitchemistry.chemical_classification010405 organic chemistryluminesenssikompleksiyhdisteetGeneral ChemistryDynamic mechanical analysisCondensed Matter Physicsfluorifysikaaliset ominaisuudet0104 chemical scienceschemistryChemical engineeringvisual_artFluorinevisual_art.visual_art_mediumTerpyridinePlatinumLuminescenceSingle crystal

description

Square planar platinum(ii) complexes are attractive building blocks for multifunctional soft materials due to their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels derived from platinum(ii) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single crystal X-ray diffraction studies, we show that the presence of synergistic platinum-platinum (PtMIDLINE HORIZONTAL ELLIPSISPt) metallopolymerization and fluorine-fluorine (FMIDLINE HORIZONTAL ELLIPSISF) interactions are the major driving forces in achieving hierarchical superstructures. The resulting bright red gels showed the presence of highly entangled three-dimensional networks and helical nanofibres with both (P and M) handedness. The gels recover up to 87% of their original storage modulus even after several cycles under oscillatory step-strain rheological measurements showing rapid self-healing. The luminescence properties, along with thermo- and mechanoresponsive gelation, provide the potential to utilize synthetically simple discrete complexes in advanced optical materials. Peer reviewed

10.1039/c9sm02186hhttps://aaltodoc.aalto.fi/handle/123456789/43646