Binding of ion pairs and neutral guests by aryl-extended meso‑p-hydroxyphenyl calix[4]pyrrole : The interplay between three binding sites
An aryl-extended calix[4]pyrrole with four meso‑p-hydroxyphenyl substituents was investigated as a host for chloride, acetate, and benzoate anions. Crystal structures of pyridinium and imidazolium chloride complexes were obtained in which chloride ions are hydrogen bonded exo-cavity to the upper rim hydroxyl groups, and the aromatic cations are bound to the shallow cavity of the host. Furthermore, the calix[4]pyrrole formed a hydrogen bonded dimeric capsule templated by inclusion of adiponitrile guest in the endo-cavity binding site. NMR titrations revealed the preference of the OH groups of the host to bind anionic guests in solution. Benzoate anion had the highest binding constant (4 700 …
Controlling the crystal growth of potassium iodide with a 1,1'-bis(pyridin-4-ylmethyl)-2,2'-biimidazole ligand (L) – formation of a linear [K4I4L4]n polymer with cubic [K4I4] core units
The crystal growth of potassium iodide was controlled by using the neutral organic 1,1′-bis(pyridin-4-ylmethyl)-2,2′-biimidazole (L) ligand as a modifier. The selected modifier allows the preservation of original cubic [K4I4] units and their arrangement into a linear ligand-supported 1D chain. The supported [K4I4] cubes are only slightly distorted compared to the cubes found in pure KI salt. The N–K binding of the ligand to the KI salt, as well as weak I⋯H, N⋯H, and N⋯I interactions, stabilizes the structure to create a unique 1D polymer of neutral potassium iodide ionic salt inside the [K4I4L4]n complex.
Syntheses and Structures of a Series of Acyclic Diaminocarbene Palladium(II) Complexes Derived from 3,4-Diaryl-1H-pyrrol-2,5-diimines and Bisisocyanide Palladium(II) Complexes
Reactions of 3,4-diaryl-1H-pyrrol-2,5-diimines with various bisisocyanide palladium(II) complexes were studied. The coupling proceeds with one isocyanide ligand to accomplish the acyclic diaminocarbene complexes. The structure of generated diaminocarbene complexes depends on bulkiness of isocyanide ligand in the bisisocyanide complexes of palladium(II). The imino-group of 3,4-diaryl-1H-pyrrol-2,5-diimine reacts with one isocyanide ligand of cis-[PdCl2(CN–R)2] (R = i-Pr, Cy, t-Bu, Bn), and the nitrogen atom of the pyrrole ring is coordinated to the palladium center as the second isocyanide ligand remains intact. In the case of cis-[PdCl2(CN–R)2] (R = 2-acyloxyphenyl, 2-sulfonyloxyphenyl), on…
Triple associates based on (oxime)Pt(II) species, 18-crown-6, and water: Synthesis, structural characterization, and DFT study
Abstract The associates 2(cis-[PtCl2(acetoxime)2])⋅18-crown-6⋅2H2O (1), 2(cis-[PtBr2(acetoxime)2])⋅18-crown-6⋅2H2O (2), and trans-[PtCl2(acetaldoxime)2]⋅(18-crown-6)⋅2H2O (3) were synthesized by co-crystallization of free corresponding platinum species and 18-crown-6 from wet solvents and characterized by 1H NMR and IR spectroscopies, high-resolution mass-spectrometry (ESI), TG/DTA, and X-ray crystallography. The (oxime)Pt(II) species are assembled with 18-crown-6 and water by hydrogen bonding between the hydroxylic hydrogen atoms of the oxime ligands and the oxygen atom of water and between the hydrogen atoms of water and the oxygen atoms of 18-crown-6. In 2(cis-[PtX2(acetoxime)2])⋅18-crow…
Construction of Coordination Polymers from Semirigid Ditopic 2,2′-Biimidazole Derivatives: Synthesis, Crystal Structures, and Characterization
Eight coordination polymers (CPs), {[Ag(L1)]ClO4}n (1), {[Ag(L2)1.5]ClO4·C2H3N}n (2a), {[Ag(L2)]ClO4}n (2b), [Zn(L1)Cl2]n (3), {[Zn(L2)Cl2]·CHCl3}n (4), {[Cu(L1)2Cl]Cl·H2O}n (5), [Cu2(L2)(μ-Cl)2]n (6), and [Cu4(L2)(μ-Cl)4]n (7) were synthesized via self-assembly of corresponding metal ions and biimidazole based ditopic ligands, 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole L1 and 1,1′-bis(pyridin-4-ylmethyl)-2,2′-biimidazole L2. These ligands possess conformational flexibility and two pairs of coordination sites: pyridine nitrogen (NPy) atoms and imidazole nitrogen (NIm) atoms. Depending on the metal center in CPs, the biimidazole compounds act as tetra- (1, 7), tri- (2a), or bidentate (2a,…
Bis(hydroxyammonium) hexachloridoplatinate(IV)–18-crown-6 (1/2)
In the title complex, (NH3OH)2[PtCl6]·2C12H24O6, the PtIV atom is coordinated by six chloride anions in a slightly distorted octahedral geometry. The Pt—Cl bond lengths are comparable to those reported for other hexachloridoplatinate(IV) species. The hydroxyammonium groups act as linkers between the [PtCl6]2− anion and the crown ether molecules. The anion is linked to two hydroxyammonium cations via O—H...Cl hydrogen bonds and each hydroxyammonium moiety is linked to a crown ether molecule by hydrogen bonds between ammonium H atoms and 18-crown-6 O atoms. The crown ether molecules have the classic crown shape in which all O atoms are located in the inner part of the crown ether ring and all…
Non-conventional synthesis and photophysical studies of platinum(ii) complexes with methylene bridged 2,2′-dipyridylamine derivatives
Methylene bridged 2,2′-dipyridylamine (dpa) derivatives and their metal complexes possess outstanding properties due to their inherent structural flexibility. Synthesis of such complexes typically involves derivatization of dpa followed by coordination on metals, and may not always be very efficient. In this work, an alternative synthetic approach, involving the derivatization step after – rather than prior to – coordination of dpa on metal center, is proposed and applied to synthesis of a number of platinum(II) complexes with substituted benzyldi(2-pyridyl)amines. Comparison with the more conventional synthetic route reveals greater efficiency and versatility of the proposed approach. The …
Infinite coordination polymer networks metallogelation of aminopyridine conjugates and in situ silver nanoparticle formation
Herein we report silver(i) directed infinite coordination polymer network (ICPN) induced self-assembly of low molecular weight organic ligands leading to metallogelation. Structurally simple ligands are derived from 3-aminopyridine and 4-aminopyridine conjugates which are composed of either pyridine or 2,2'-bipyridine cores. The cation specific gelation was found to be independent of the counter anion, leading to highly entangled fibrillar networks facilitating the immobilization of solvent molecules. Rheological studies revealed that the elastic storage modulus (G') of a given gelator molecule is counter anion dependent. The metallogels derived from ligands containing a bipyridine core dis…
An efficient method for selective oxidation of (oxime)Pt(II) to (oxime)Pt(IV) species using N,N-dichlorotosylamide
The oxidation of (oxime)PtII species using the electrophilic chlorine-based oxidant N,N-dichlorotosylamide (4-CH3C6H4SO2NCl2) was studied. The reactions of trans-[PtCl2(oxime)2] (where oxime = acetoxime, cyclopentanone oxime, or acetaldoxime) with this oxidant led to trans-[PtCl4(oxime)2] products. The oxidation of trans-[Pt(o-OC6H4CH = NOH)2] at room temperature gave trans-[PtCl2(o-OC6H4CH = NOH)2], whereas the same reaction upon heating was accompanied by electrophilic substitution of the benzene rings. peerReviewed
5-Imino-3,4-diphenyl-1H-pyrrol-2-one
The title compound, C16H12N2O, exists in the crystalline state as the 5-imino-3,4-diphenyl-1H-pyrrol-2-one tautomer. The dihedral angles between the pyrrole and phenyl rings are 35.3 (2) and 55.3 (2)°. In the crystal, inversion dimers linked by pairs of N—H...N hydrogen bonds generate a graph-set motif ofR22(8)viaN—H...N hydrogen bonds.
3D Printed Palladium Catalyst for Suzuki-Miyaura Cross-coupling Reactions
Selective laser sintering (SLS) 3d printing was utilized to manufacture a solid catalyst for Suzuki-Miyaura cross-coupling reactions from polypropylene as a base material and palladium nanoparticles on silica (SilicaCat Pd(0)R815-100 by SiliCycle) as the catalytically active additive. The 3d printed catalyst showed similar activity to that of the pristine powdery commercial catalyst, but with improved practical recoverability and reduced leaching of palladium into solution. Recycling of the printed catalyst led to increase of the induction period of the reactions, attributed to the pseudo-homogeneous catalysis. The reaction is initiated by oxidative addition of aryl iodide to palladium nano…
2,3-Diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate
In the title compound, C16H11NO2·C5H9NO, the dihedral angles between the maleimide and phenyl rings are 34.7 (2) and 64.8 (2)°. In the crystal, the 2,3-diphenylmaleimide and 1-methylpyrrolidin-2-one molecules form centrosymmetrical dimersviapairs of strong N—H...O hydrogen bonds and π–π stacking interactions between the two neighboring maleimide rings [centroid–centroid distance = 3.495 (2) Å]. The dimers are further linked by weak C—H...O and C—H...π hydrogen bonds into a three-dimensional framework.
Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine–fluorine interactions
Square planar platinum(ii) complexes are attractive building blocks for multifunctional soft materials due to their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels derived from platinum(ii) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single crystal X-ray diffraction studies, we show that the presence of synergistic platinum-platinum (PtMIDLINE HORIZONTAL ELLIPSISPt) metallopolymerization and f…
Revisited Dual Luminescence of 2,2′-Dipyridylamine Hydrochloride in Solution and Physical Processes behind It
Noncovalent axial I∙∙∙Pt∙∙∙I interactions in platinum(II) complexes strengthen in the excited state
Abstract Coordination compounds of platinum(II) participate in various noncovalent axial interactions involving metal center. Weakly bound axial ligands can be electrophilic or nucleophilic; however, interactions with nucleophiles are compromised by electron density clashing. Consequently, simultaneous axial interaction of platinum(II) with two nucleophilic ligands is almost unprecedented. Herein, we report structural and computational study of a platinum(II) complex possessing such intramolecular noncovalent I⋅⋅⋅Pt⋅⋅⋅I interactions. Structural analysis indicates that the two iodine atoms approach the platinum(II) center in a “side‐on” fashion and act as nucleophilic ligands. According to c…
CCDC 1823431: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J
CCDC 1868995: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1868989: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1545350: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1545346: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1949029: Experimental Crystal Structure Determination
Related Article: Kalle Kolari, Evgeny Bulatov, Rajendhraprasad Tatikonda, Kia Bertula, Elina Kalenius, Nonappa, Matti Haukka|2020|Soft Matter|16|2795|doi:10.1039/C9SM02186H
CCDC 1823427: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J
CCDC 1588805: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Rajendhraprasad Tatikonda, Pipsa Hirva, Evgeny Bulatov, Elina Sievänen, Matti Haukka|2018|CrystEngComm|20|3631|doi:10.1039/C8CE00483H
CCDC 2175936: Experimental Crystal Structure Determination
Related Article: Małgorzata Pamuła, Evgeny Bulatov, Kaisa Helttunen|2023|J.Mol.Struct.|1273|134268|doi:10.1016/j.molstruc.2022.134268
CCDC 1868990: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1545345: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 2175934: Experimental Crystal Structure Determination
Related Article: Małgorzata Pamuła, Evgeny Bulatov, Kaisa Helttunen|2023|J.Mol.Struct.|1273|134268|doi:10.1016/j.molstruc.2022.134268
CCDC 1949030: Experimental Crystal Structure Determination
Related Article: Kalle Kolari, Evgeny Bulatov, Rajendhraprasad Tatikonda, Kia Bertula, Elina Kalenius, Nonappa, Matti Haukka|2020|Soft Matter|16|2795|doi:10.1039/C9SM02186H
CCDC 1868993: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1541300: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1868988: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1823429: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J
CCDC 1868987: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1868998: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1823430: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J
CCDC 1868997: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1868996: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1868991: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1823432: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J
CCDC 1817631: Experimental Crystal Structure Determination
Related Article: Dina V. Boyarskaya, Evgeny Bulatov, Irina A. Boyarskaya, Tatiana G. Chulkova, Valentin A. Rassadin, Elena G. Tolstopjatova, Ilya E. Kolesnikov, Margarita S. Avdontceva, Taras L. Panikorovskii, Vitalii V. Suslonov, Matti Haukka|2018|Organometallics|38|300|doi:10.1021/acs.organomet.8b00725
CCDC 1545348: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1868994: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1541301: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1868992: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G
CCDC 1545344: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1545351: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1545352: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1818370: Experimental Crystal Structure Determination
Related Article: Dina V. Boyarskaya, Evgeny Bulatov, Irina A. Boyarskaya, Tatiana G. Chulkova, Valentin A. Rassadin, Elena G. Tolstopjatova, Ilya E. Kolesnikov, Margarita S. Avdontceva, Taras L. Panikorovskii, Vitalii V. Suslonov, Matti Haukka|2018|Organometallics|38|300|doi:10.1021/acs.organomet.8b00725
CCDC 1817212: Experimental Crystal Structure Determination
Related Article: Dina V. Boyarskaya, Evgeny Bulatov, Irina A. Boyarskaya, Tatiana G. Chulkova, Valentin A. Rassadin, Elena G. Tolstopjatova, Ilya E. Kolesnikov, Margarita S. Avdontceva, Taras L. Panikorovskii, Vitalii V. Suslonov, Matti Haukka|2018|Organometallics|38|300|doi:10.1021/acs.organomet.8b00725
CCDC 1823428: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J
CCDC 1545343: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1822187: Experimental Crystal Structure Determination
Related Article: Dina V. Boyarskaya, Evgeny Bulatov, Irina A. Boyarskaya, Tatiana G. Chulkova, Valentin A. Rassadin, Elena G. Tolstopjatova, Ilya E. Kolesnikov, Margarita S. Avdontceva, Taras L. Panikorovskii, Vitalii V. Suslonov, Matti Haukka|2018|Organometallics|38|300|doi:10.1021/acs.organomet.8b00725
CCDC 2175935: Experimental Crystal Structure Determination
Related Article: Małgorzata Pamuła, Evgeny Bulatov, Kaisa Helttunen|2023|J.Mol.Struct.|1273|134268|doi:10.1016/j.molstruc.2022.134268
CCDC 1823433: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J
CCDC 1545347: Experimental Crystal Structure Determination
Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034
CCDC 1868999: Experimental Crystal Structure Determination
Related Article: Evgeny Bulatov, Matti Haukka|2019|Dalton Trans.|48|3369|doi:10.1039/C8DT03912G