6533b82ffe1ef96bd1295d47

RESEARCH PRODUCT

3D Printed Palladium Catalyst for Suzuki-Miyaura Cross-coupling Reactions

Evgeny BulatovEvgeny BulatovEvamarie Hey-hawkinsMatti HaukkaElmeri LahtinenLauri Kivijärvi

subject

3d printedMaterials scienceNANOPARTICLE116 Chemical sciences3D printingNanoparticle010402 general chemistry01 natural sciencesCatalysisCoupling reactionlaw.inventionInorganic ChemistrykatalyytitlawMIZOROKI-HECK3D-tulostuspalladium nanoparticlesselective laser sinteringPhysical and Theoretical ChemistryFILTERSSuzuki-Miyaura cross-couplingcatalysis010405 organic chemistrybusiness.industry3d printingOrganic ChemistryPINCER COMPLEXESPalladium nanoparticlespalladium0104 chemical sciencesSelective laser sinteringChemical engineeringnanohiukkaset221 Nano-technologybusinessPalladium catalyst

description

Selective laser sintering (SLS) 3d printing was utilized to manufacture a solid catalyst for Suzuki-Miyaura cross-coupling reactions from polypropylene as a base material and palladium nanoparticles on silica (SilicaCat Pd(0)R815-100 by SiliCycle) as the catalytically active additive. The 3d printed catalyst showed similar activity to that of the pristine powdery commercial catalyst, but with improved practical recoverability and reduced leaching of palladium into solution. Recycling of the printed catalyst led to increase of the induction period of the reactions, attributed to the pseudo-homogeneous catalysis. The reaction is initiated by oxidative addition of aryl iodide to palladium nanoparticles, resulting in formation of soluble molecular species, which then act as the homogeneous catalyst. SLS 3d printing improves handling, overall practicality and recyclability of the catalyst without altering the chemical behaviour of the active component. Peer reviewed

http://urn.fi/URN:NBN:fi:jyu-202010076120