0000000000024071

AUTHOR

Rajendhraprasad Tatikonda

0000-0003-1277-3492

Controlling the crystal growth of potassium iodide with a 1,1'-bis(pyridin-4-ylmethyl)-2,2'-biimidazole ligand (L) – formation of a linear [K4I4L4]n polymer with cubic [K4I4] core units

The crystal growth of potassium iodide was controlled by using the neutral organic 1,1′-bis(pyridin-4-ylmethyl)-2,2′-biimidazole (L) ligand as a modifier. The selected modifier allows the preservation of original cubic [K4I4] units and their arrangement into a linear ligand-supported 1D chain. The supported [K4I4] cubes are only slightly distorted compared to the cubes found in pure KI salt. The N–K binding of the ligand to the KI salt, as well as weak I⋯H, N⋯H, and N⋯I interactions, stabilizes the structure to create a unique 1D polymer of neutral potassium iodide ionic salt inside the [K4I4L4]n complex.

research product

Metallogel formation in aqueous DMSO by perfluoroalkyl decorated terpyridine ligands.

Terpyridine based ligands 1 and 2, decorated with a C8F17 perfluorinated tag, are able to form stable thermoreversible gels in the presence of several d-block metal chloride salts. The gel systems obtained have been characterized by NMR, X-ray diffraction, electron microscopies and Tgel experiments in order to gain insights into the observed different behaviour of the two similar ligands, also in terms of the effect of additional common anionic species. peerReviewed

research product

Construction of Coordination Polymers from Semirigid Ditopic 2,2′-Biimidazole Derivatives: Synthesis, Crystal Structures, and Characterization

Eight coordination polymers (CPs), {[Ag(L1)]ClO4}n (1), {[Ag(L2)1.5]ClO4·C2H3N}n (2a), {[Ag(L2)]ClO4}n (2b), [Zn(L1)Cl2]n (3), {[Zn(L2)Cl2]·CHCl3}n (4), {[Cu(L1)2Cl]Cl·H2O}n (5), [Cu2(L2)(μ-Cl)2]n (6), and [Cu4(L2)(μ-Cl)4]n (7) were synthesized via self-assembly of corresponding metal ions and biimidazole based ditopic ligands, 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole L1 and 1,1′-bis(pyridin-4-ylmethyl)-2,2′-biimidazole L2. These ligands possess conformational flexibility and two pairs of coordination sites: pyridine nitrogen (NPy) atoms and imidazole nitrogen (NIm) atoms. Depending on the metal center in CPs, the biimidazole compounds act as tetra- (1, 7), tri- (2a), or bidentate (2a,…

research product

Novel ruthenium methylcyclopentadienyl complex bearing a bipyridine perfluorinated ligand shows strong activity towards colorectal cancer cells

Three new compounds have been synthesized and completely characterized by analytical and spectroscopic techniques. The new bipyridine-perfluorinated ligand L1 and the new organometallic complex [Ru(η 5 -MeCp)(PPh 3 ) 2 Cl] (Ru1) crystalize in the centrosymmetric triclinic space group P1¯. Analysis of the phenotypic effects induced by both organometallic complexes Ru1 and [Ru(η 5 -MeCp)(PPh 3 )(L1)][CF 3 SO 3 ] (Ru2), on human colorectal cancer cells (SW480 and RKO) survival, showed that Ru2 has a potent anti-proliferative activity, 4–6 times higher than cisplatin, and induce apoptosis in these cells. Data obtained in a noncancerous cell line derived from normal colon epithelial cells (NCM46…

research product

Ruthenium(II) carbonyl compounds with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand

The RuII atoms in the crystal structures of two new potential catalyst precursors, [Ru(Tpy-Cl)(CO)2Cl][Ru(CO)3Cl3] and [Ru(Tpy-Cl)(CO)2Cl2] (Tpy-Cl = 4′-chloro 2,2′:6′,2′′-terpyridine-κ3 N), exhibit distorted octa­hedral coordination spheres.

research product

Selective recovery of gold from electronic waste using 3D-printed scavenger

Around 10% of the worldwide annual production of gold is used for manufacturing of electronic devices. According to the European Commission, waste electric and electronic equipment is the fastest growing waste stream in the European Union. This has generated the need for an effective method to recover gold from electronic waste. Here, we report a simple, effective, and highly selective nylon-12-based three-dimensional (3D)-printed scavenger objects for gold recovery directly from an aqua regia extract of a printed circuit board waste. Using the easy to handle and reusable 3D-printed meshes or columns, gold can be selectively captured both in a batch and continuous flow processes by dipping …

research product

Infinite coordination polymer networks metallogelation of aminopyridine conjugates and in situ silver nanoparticle formation

Herein we report silver(i) directed infinite coordination polymer network (ICPN) induced self-assembly of low molecular weight organic ligands leading to metallogelation. Structurally simple ligands are derived from 3-aminopyridine and 4-aminopyridine conjugates which are composed of either pyridine or 2,2'-bipyridine cores. The cation specific gelation was found to be independent of the counter anion, leading to highly entangled fibrillar networks facilitating the immobilization of solvent molecules. Rheological studies revealed that the elastic storage modulus (G') of a given gelator molecule is counter anion dependent. The metallogels derived from ligands containing a bipyridine core dis…

research product

Synthesis and characterization of Zwitterionic Zn(II) and Cu(II) coordination compounds with ring-substituted 2,2′-biimidazole derivatives

Zwitterionic coordination compounds with strongly asymmetrical charge distribution were synthesized and characterized. Ring-substituted biimidazoles were used as the primary ligands for Zn and Cu compounds. Formation of Zwitterionic coordination compound was found to be strongly dependent on the pH of the reaction medium as well as on the ring and nitrogen substituents of the ligand. Reaction of the Df-R2biim (Df-R2biim = 2,2′-bi-1R-imidazole-5,5′-dicarboxaldehyde, R = Me, Et or Pr) with ZnCl2 in neutral conditions led to binuclear compounds [Zn2Cl4(Df-R2biim)2] with two bridging ligands (1a–c). Reaction with CuCl2·2H2O gave neutral mononuclear compound [CuCl2(Df-Me2biim)] (1d) with chelati…

research product

Metallophilic interactions in stacked dinuclear rhodium 2,2'-biimidazole carbonyl complexes

Non-covalent metallophilic interactions were studied by investigating the stacking of two neutral rhodium complexes [Rh2I(R2bim)Cl2(CO)4] (R = Et, ethyl or Pr, propyl) in the solid state. Both dinuclear complexes formed infinite arrays of square planar d8 rhodium centres with intramolecular Rh⋯Rh distances of 3.1781(5) A (R = Et) and 3.1469(3) A (R = Pr) and the intermolecular Rh⋯Rh distances of 3.4345(6) A (R = Et) and 3.4403(3) A (R = Pr) between the adjacent molecules. The crystalline solids were stable and did not contain any solvent of crystallization. The effect of the metallophilic interactions on the absorption properties were studied using TD-DFT methods. The computational results …

research product

Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine–fluorine interactions

Square planar platinum(ii) complexes are attractive building blocks for multifunctional soft materials due to their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels derived from platinum(ii) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single crystal X-ray diffraction studies, we show that the presence of synergistic platinum-platinum (PtMIDLINE HORIZONTAL ELLIPSISPt) metallopolymerization and f…

research product

Bipyridine based metallogels: an unprecedented difference in photochemical and chemical reduction in the in situ nanoparticle formation

Metal co-ordination induced supramolecular gelation of low molecular weight organic ligands is a rapidly expanding area of research due to the potential in creating hierarchically self-assembled multi-stimuli responsive materials. In this context, structurally simple O-methylpyridine derivatives of 4,4′-dihydroxy-2,2′-bipyridine ligands are reported. Upon complexation with Ag(I) ions in aqueous dimethyl sulfoxide (DMSO) solutions the ligands spontaneously form metallosupramolecular gels at concentrations as low as 0.6 w/v%. The metal ions induce the self-assembly of three dimensional (3D) fibrillar networks followed by the spontaneous in situ reduction of the Ag-centers to silver nanopartic…

research product

Mononuclear Ru(II) PolyPyridyl Water Oxidation Catalysts Decorated with Perfluoroalkyl C 8 H 17 ‐Tag Bearing Chains

research product

CCDC 1823431: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J

research product

CCDC 1500638: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Kia Bertula, Nonappa, Sami Hietala, Kari Rissanen, Matti Haukka|2017|Dalton Trans.|46|2793|doi:10.1039/C6DT04253H

research product

CCDC 1443455: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1443459: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1545350: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1545346: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1949029: Experimental Crystal Structure Determination

Related Article: Kalle Kolari, Evgeny Bulatov, Rajendhraprasad Tatikonda, Kia Bertula, Elina Kalenius, Nonappa, Matti Haukka|2020|Soft Matter|16|2795|doi:10.1039/C9SM02186H

research product

CCDC 1823427: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J

research product

CCDC 1443458: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1588805: Experimental Crystal Structure Determination

Related Article: Margarita Bulatova, Rajendhraprasad Tatikonda, Pipsa Hirva, Evgeny Bulatov, Elina Sievänen, Matti Haukka|2018|CrystEngComm|20|3631|doi:10.1039/C8CE00483H

research product

CCDC 1545345: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1477312: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A

research product

CCDC 1477308: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A

research product

CCDC 1907903: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579

research product

CCDC 1500637: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Kia Bertula, Nonappa, Sami Hietala, Kari Rissanen, Matti Haukka|2017|Dalton Trans.|46|2793|doi:10.1039/C6DT04253H

research product

CCDC 1493775: Experimental Crystal Structure Determination

Related Article: Ricardo G. Teixeira, Ana Rita Brás, Leonor Côrte-Real, Rajendhraprasad Tatikonda, Anabela Sanches, M. Paula Robalo, Fernando Avecilla, Tiago Moreira, M. Helena Garcia, Matti Haukka, Ana Preto, Andreia Valente|2018|Eur.J.Med.Chem.|143|503|doi:10.1016/j.ejmech.2017.11.059

research product

CCDC 1477310: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A

research product

CCDC 1949030: Experimental Crystal Structure Determination

Related Article: Kalle Kolari, Evgeny Bulatov, Rajendhraprasad Tatikonda, Kia Bertula, Elina Kalenius, Nonappa, Matti Haukka|2020|Soft Matter|16|2795|doi:10.1039/C9SM02186H

research product

CCDC 1541300: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1493777: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579

research product

CCDC 1443464: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1493776: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579

research product

CCDC 1823429: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J

research product

CCDC 1443457: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1443461: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1823430: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J

research product

CCDC 1500639: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Kia Bertula, Nonappa, Sami Hietala, Kari Rissanen, Matti Haukka|2017|Dalton Trans.|46|2793|doi:10.1039/C6DT04253H

research product

CCDC 1477311: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A

research product

CCDC 1823432: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J

research product

CCDC 1443456: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1545348: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1493778: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579

research product

CCDC 1541301: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1443462: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1443465: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1443460: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1535674: Experimental Crystal Structure Determination

Related Article: Ricardo G. Teixeira, Ana Rita Brás, Leonor Côrte-Real, Rajendhraprasad Tatikonda, Anabela Sanches, M. Paula Robalo, Fernando Avecilla, Tiago Moreira, M. Helena Garcia, Matti Haukka, Ana Preto, Andreia Valente|2018|Eur.J.Med.Chem.|143|503|doi:10.1016/j.ejmech.2017.11.059

research product

CCDC 1545344: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1545351: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1477309: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Sandip Bhowmik, Kari Rissanen, Matti Haukka, Massimo Cametti|2016|Dalton Trans.|45|12756|doi:10.1039/C6DT02008A

research product

CCDC 1545352: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1823428: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J

research product

CCDC 1545343: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

CCDC 1493774: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Massimo Cametti, Elina Kalenius, Antonino Famulari, Kari Rissanen, Matti Haukka|2019|Eur.J.Inorg.Chem.|2019|4463|doi:10.1002/ejic.201900579

research product

CCDC 1823433: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Zülal Özdemir, Nonappa, Matti Haukka|2019|Soft Matter|15|442|doi:10.1039/C8SM02006J

research product

CCDC 1443463: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Elina Kalenius, Matti Haukka|2016|Inorg.Chim.Acta|453|298|doi:10.1016/j.ica.2016.08.015

research product

CCDC 1545347: Experimental Crystal Structure Determination

Related Article: Rajendhraprasad Tatikonda, Evgeny Bulatov, Elina Kalenius, Matti Haukka|2017|Cryst.Growth Des.|17|5918|doi:10.1021/acs.cgd.7b01034

research product

Multivalent N-donor ligands for the construction of coordination polymers and coordination polymer gels

This work describes the synthesis and characterisation of several multivalent N-donor ligands and their coordination compounds and the use of these ligands in the construction of coordination polymers and coordination polymer gels. The project can be divided into two parts. The first part of the research is focused on the coordination chemistry of ring-substituted biimidazoles in acidic media. The dependence of the formation of ion pairs and zwitterionic, especially zinc and copper containing coordination compounds on the pH of the reaction medium and ring-substituents of the ligand were examined. The second part of the study deals with the preparation of Ag, Zn and Cu coordination polymers…

research product