0000000001299609

AUTHOR

David I. Warton

showing 11 related works from this author

Efficient estimation of generalized linear latent variable models.

2019

Generalized linear latent variable models (GLLVM) are popular tools for modeling multivariate, correlated responses. Such data are often encountered, for instance, in ecological studies, where presence-absences, counts, or biomass of interacting species are collected from a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of computationally efficient estimation methods. For likelihood based estimation, several closed form approximations for the marginal likelihood of GLLVMs have been proposed, but their efficient implementations have been lacking in the literature. To fill this gap, we show in this paper how to obtain computationally convenient estim…

0106 biological sciencesMultivariate statisticsMultivariate analysisComputer scienceBinomials01 natural sciencesPolynomials010104 statistics & probabilityAmoebastilastolliset mallitestimointiProtozoansLikelihood FunctionsMultidisciplinaryApproximation MethodsStatistical ModelsSimulation and ModelingApplied MathematicsStatisticsQLinear modelREukaryotaLaplace's methodData Interpretation StatisticalPhysical SciencesVertebratesMedicineAlgorithmAlgorithmsResearch ArticleOptimizationScienceLatent variableResearch and Analysis Methods010603 evolutionary biologygeneralized linear latent variable modelsSet (abstract data type)BirdsAnimalsComputer Simulation0101 mathematicsta112OrganismsBiology and Life SciencesStatistical modelMarginal likelihoodAlgebraAmniotesMultivariate AnalysisLinear ModelsMathematicsSoftwarePLoS ONE
researchProduct

Model‐based approaches to unconstrained ordination

2014

Summary Unconstrained ordination is commonly used in ecology to visualize multivariate data, in particular, to visualize the main trends between different sites in terms of their species composition or relative abundance. Methods of unconstrained ordination currently used, such as non-metric multidimensional scaling, are algorithm-based techniques developed and implemented without directly accommodating the statistical properties of the data at hand. Failure to account for these key data properties can lead to misleading results. A model-based approach to unconstrained ordination can address this issue, and in this study, two types of models for ordination are proposed based on finite mixtu…

0106 biological sciencesComputer science010604 marine biology & hydrobiologyEcological ModelingModel selectionLatent variableMixture modelcomputer.software_genre010603 evolutionary biology01 natural sciencesData typeStatistical inferenceOrdinationMultidimensional scalingData miningLatent variable modelcomputerEcology Evolution Behavior and SystematicsMethods in Ecology and Evolution
researchProduct

Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models

2021

In ecological community studies it is often of interest to study the effect of species related trait variables on abundances or presence-absences. Specifically, the interest may lay in the interactions between environmental and trait variables. An increasingly popular approach for studying such interactions is to use the so-called fourth-corner model, which explicitly posits a regression model where the mean response of each species is a function of interactions between covariate and trait predictors (among other terms). On the other hand, many of the fourth-corner models currently applied in the literature are too simplistic to properly account for variation in environmental and trait resp…

Statistics and ProbabilityEcological ModelingLatent variableeliöyhteisötcommunity analysisGeneralized linear mixed modelekologiajoint species distribution modelgeneralized linear mixed modelmultivariate abundance datamonimuuttujamenetelmätCommunity analysisEconometricsTraitvariational approximationtilastolliset mallitfourth-corner problemympäristönmuutoksetMathematics
researchProduct

Extending Joint Models in Community Ecology : A Response to Beissinger et al.

2016

The joint modelling of many variables in community ecology is a new and technically challenging area with many opportunities for future developments. The possibility of extending joint models to deal with imperfect detection has been highlighted by Beissinger et al. as an important problem worthy of further investigation [1]. We agree, and previously pointed to this potential extension as an outstanding question [2], alongside models that can estimate phylogenetic repulsion or attraction, nonlinearity in the response to latent variables, and spatial or temporal correlation, because further developments in all these directions are needed.

0106 biological sciencesta112CommunityComputer science010604 marine biology & hydrobiologyjoint modelsLatent variableTemporal correlation010603 evolutionary biology01 natural sciencesExtension (metaphysics)EconometricsImperfectJoint (geology)Ecology Evolution Behavior and Systematicscommunity ecologyTrends in Ecology and Evolution
researchProduct

smatr 3 - an R package for estimation and inference about allometric lines

2011

Summary 1. The Standardised Major Axis Tests and Routines (SMATR) software provides tools for estimation and inference about allometric lines, currently widely used in ecology and evolution. 2. This paper describes some significant improvements to the functionality of the package, now available on R in smatr version 3. 3. New inclusions in the package include sma and ma functions that accept formula input and perform the key inference tasks; multiple comparisons; graphical methods for visualising data and checking (S)MA assumptions; robust (S)MA estimation and inference tools.

Estimationbusiness.industryComputer scienceEcological ModelingInferencecomputer.software_genreR packageSoftwareMultiple comparisons problemPrincipal component analysisKey (cryptography)Data miningAllometrybusinesscomputerEcology Evolution Behavior and SystematicsMethods in Ecology and Evolution
researchProduct

gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models inr

2019

The work of J.N. was supported by the Wihuri Foundation. The work of S.T. was supported by the CRoNoS COST Action IC1408.F.K.C.H. was also supported by an ANU cross disciplinary grant.

0106 biological sciencesClustering high-dimensional dataMultivariate statisticsMultivariate analysisCross disciplinary010604 marine biology & hydrobiologyEcological ModelingMaximum likelihoodLatent variable010603 evolutionary biology01 natural sciencesAbundance (ecology)StatisticsCost actionEcology Evolution Behavior and SystematicsMathematicsMethods in Ecology and Evolution
researchProduct

So Many Variables: Joint Modeling in Community Ecology

2015

Technological advances have enabled a new class of multivariate models for ecology, with the potential now to specify a statistical model for abundances jointly across many taxa, to simultaneously explore interactions across taxa and the response of abundance to environmental variables. Joint models can be used for several purposes of interest to ecologists, including estimating patterns of residual correlation across taxa, ordination, multivariate inference about environmental effects and environment-by-trait interactions, accounting for missing predictors, and improving predictions in situations where one can leverage knowledge of some species to predict others. We demonstrate this by exa…

Multivariate statisticsModels StatisticalCommunityEcologyLinear modelInferenceStatistical model15. Life on landBiologyBiotaLinear ModelsResidual correlationEconometricsLeverage (statistics)OrdinationEcosystemEcology Evolution Behavior and SystematicsTrends in Ecology & Evolution
researchProduct

Robust estimation and inference for bivariate line-fitting in allometry.

2011

In allometry, bivariate techniques related to principal component analysis are often used in place of linear regression, and primary interest is in making inferences about the slope. We demonstrate that the current inferential methods are not robust to bivariate contamination, and consider four robust alternatives to the current methods -- a novel sandwich estimator approach, using robust covariance matrices derived via an influence function approach, Huber's M-estimator and the fast-and-robust bootstrap. Simulations demonstrate that Huber's M-estimators are highly efficient and robust against bivariate contamination, and when combined with the fast-and-robust bootstrap, we can make accurat…

Statistics and ProbabilityHeteroscedasticityAnalysis of VarianceCovariance matrixRobust statisticsEstimatorGeneral MedicineBivariate analysisCovarianceBiostatisticsStatistics::ComputationEfficient estimatorPrincipal component analysisStatisticsEconometricsStatistics::MethodologyBody SizeStatistics Probability and UncertaintyMathematicsProbabilityBiometrical journal. Biometrische Zeitschrift
researchProduct

Variational Approximations for Generalized Linear Latent Variable Models

2017

Generalized linear latent variable models (GLLVMs) are a powerful class of models for understanding the relationships among multiple, correlated responses. Estimation, however, presents a major challenge, as the marginal likelihood does not possess a closed form for nonnormal responses. We propose a variational approximation (VA) method for estimating GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive fully closed-form approximations to the marginal log-likelihood function in each case. Compared to other methods such as the expectation-maximization algorithm, estimation using VA is fast and straightforward to implement. Predictions of the latent variabl…

0106 biological sciencesStatistics and ProbabilityMathematical optimizationBinary numberfactor analysisLatent variableordination010603 evolutionary biology01 natural sciences010104 statistics & probabilityItem response theoryDiscrete Mathematics and CombinatoricsApplied mathematicslatent trait0101 mathematicsLatent variable modelMathematicsta112item response theoryFunction (mathematics)Latent class modelMarginal likelihoodfaktorianalyysipappisvihkimysmultivariate analysisvariational approximationStatistics Probability and UncertaintyCount data
researchProduct

gllvm : Fast analysis of multivariate abundance data with generalized linear latent variable models in R

2019

1.There has been rapid development in tools for multivariate analysis based on fully specified statistical models or “joint models”. One approach attracting a lot of attention is generalized linear latent variable models (GLLVMs). However, software for fitting these models is typically slow and not practical for large datsets. 2.The R package gllvm offers relatively fast methods to fit GLLVMs via maximum likelihood, along with tools for model checking, visualization and inference. 3.The main advantage of the package over other implementations is speed e.g. being two orders of magnitude faster, and capable of handling thousands of response variables. These advances come from using variationa…

mallintaminenspecies interactionshigh-dimensional datamultivariate analysisvuorovaikutusmonimuuttujamenetelmätjoint modellingor-26dinationlajitmallit (mallintaminen)tilastolliset mallitekologia
researchProduct

Variational Approximations for Generalized Linear Latent Variable Models

2016

Generalized linear latent variable models (GLLVMs) are a powerful class of models for understanding the relationships among multiple, correlated responses. Estimation, however, presents a major challenge, as the marginal likelihood does not possess a closed form for nonnormal responses. We propose a variational approximation (VA) method for estimating GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive fully closed-form approximations to the marginal log-likelihood function in each case. Compared to other methods such as the expectation-maximization algorithm, estimation using VA is fast and straightforward to implement. Predictions of the latent variabl…

researchProduct