0000000001299950

AUTHOR

Laura Martínez-sarti

showing 60 related works from this author

Perovskite Light-Emitting Devices - Fundamentals and Working Principles

2018

Materials scienceEngineering physicsPerovskite (structure)
researchProduct

Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade

2018

Metal halide perovskites have established themselves as extraordinary optoelectronic materials, exhibiting promise for applications in large area illumination and displays. However, low luminescence, low efficiencies of the light-emitting diodes (LEDs), and complex preparation methods currently limit further progress towards applications. Here, we report on a new and unique mesoscopic film architecture featuring the self-assembly of 3D formamidinium lead bromide (FAPbBr3) nanocrystals of graded size, coupled with microplatelets of octylammonium lead bromide perovskites that enables an energy cascade, yielding very high-performance light-emitting diodes with emission in the green spectral re…

Materials sciencePhotoluminescence02 engineering and technologyEnergy Cascade010402 general chemistry7. Clean energy01 natural scienceslaw.inventionlawEnvironmental ChemistryPerovskitesDiodePerovskite (structure)Mesoscopic physicsRenewable Energy Sustainability and the Environmentbusiness.industry021001 nanoscience & nanotechnologyPollution0104 chemical sciencesFormamidiniumNuclear Energy and EngineeringOptoelectronicsQuantum efficiency0210 nano-technologybusinessLuminescenceLight-emitting diodeEnergy & Environmental Science
researchProduct

Colloids of naked CH 3 NH 3 PbBr 3 Perovskite Nanoparticles: Synthesis, Ssability, and thin solid film deposition

2018

A novel preparation of lead halide, CH3NH3PbBr3, perovskite nanoparticle solid films from colloidal "naked" nanoparticles, that is, dispersible nanoparticles without any surfactant, is reported. The colloids are obtained by simply adding potassium ions, whose counterions are both more lipophilic and less coordinating than bromide ions, to the perovskite precursor solutions (CH3NH3Br/PbBr2 in dimethylformamide) following the reprecipitation strategy. The naked nanoparticles exhibit a low tendency to aggregate in solution, and they effectively self-assembled on a substrate by centrifugation of the colloid, leading to homogeneous nanoparticle solid films with arbitrary thickness. These results…

Materials scienceGeneral Chemical EngineeringPHASEHalideNanoparticle02 engineering and technologySubstrate (electronics)INGENIERÍAS Y TECNOLOGÍAS010402 general chemistry01 natural scienceslcsh:ChemistryColloidPhase (matter)//purl.org/becyt/ford/2.10 [https]NANOPARTICLESELECTRON TRANSFERPerovskite (structure)chemistry.chemical_classificationNanotecnologíaGeneral Chemistry021001 nanoscience & nanotechnologyNano-materiales0104 chemical scienceslcsh:QD1-999chemistryChemical engineering//purl.org/becyt/ford/2 [https]LUMINESCENCECounterion0210 nano-technologyLuminescence
researchProduct

Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes

2016

Abstract In this work, we demonstrate flexible solution processed light emitting electrochemical cells (LECs) which use single-walled carbon nanotubes (SWCNTs) films as the substrate. The SWCNTs were synthesized by an integrated aerosol method and dry-transferred on the plastic substrates at room temperature. The addition of a screen printed poly (3,4-ethylene dioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) film onto the nanostructured electrode further homogenizes the surface and enlarges the work function, enhancing the hole injection into the active layer. By using an efficient phosphorescent ionic transition metal complex (iTMC) as the active material, efficacies up to 9…

Materials scienceLight-emitting electrochemical cellsFlexible devices02 engineering and technologySubstrate (electronics)Carbon nanotubeElectroluminescence010402 general chemistry01 natural sciencesElectrochemical celllaw.inventionBiomaterialsPEDOT:PSSlawSWCNTsMaterials ChemistryOLEDWork functionElectrical and Electronic Engineeringta114business.industryOLEDsGeneral ChemistryTransition metal complex021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsElectroluminescenceElectrodeOptoelectronics0210 nano-technologybusinessORGANIC ELECTRONICS
researchProduct

Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes

2021

Electroluminescence efficiencies of metal halide perovskite nanocrystals (PNCs) are limited by a lack of material strategies that can both suppress the formation of defects and enhance the charge carrier confinement. Here we report a one-dopant alloying strategy that generates smaller, monodisperse colloidal particles (confining electrons and holes, and boosting radiative recombination) with fewer surface defects (reducing non-radiative recombination). Doping of guanidinium into formamidinium lead bromide PNCs yields limited bulk solubility while creating an entropy-stabilized phase in the PNCs and leading to smaller PNCs with more carrier confinement. The extra guanidinium segregates to th…

Materials sciencebusiness.industry02 engineering and technologyQuímicaElectroluminescence021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials010309 opticsFormamidiniumNanocrystalVacancy defect0103 physical sciencesOptoelectronicsQuantum efficiencySpontaneous emissionCharge carrier0210 nano-technologybusinessPerovskite (structure)Nature Photonics
researchProduct

Solution processed organic light-emitting diodes using a triazatruxene crosslinkable hole transporting material.

2018

A cross-linkable triazatruxene that leads to insoluble films upon thermal annealing at temperatures compatible with flexible substrates is presented. The films were used as the hole transporting and electron blocking layer in partially solution processed phosphorescent organic light-emitting diodes, reaching power conversion efficiencies of 24 lm W−1, an almost 50% improvement compared to the same OLEDs without the cross-linkable hole transporting layer.

Materials sciencebusiness.industryGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesElectron blocking layerTriazatruxene0104 chemical sciencesSolution processedOLEDOptoelectronics0210 nano-technologyPhosphorescencebusinessLayer (electronics)DiodeRSC advances
researchProduct

Highly photoluminescent, dense solid films from organic-capped CH3NH3PbBr3 perovskite colloids

2018

The preparation of densely-packed films from hybrid lead halide perovskite nanocrystals is not trivial, as during assembly into the solid state both the charge transport and photoluminescence can be substantially altered. The objective of the present study was to retain the pre-engineered confined morphologies of hybrid lead halide perovskite nanocrystals in densely-packed solid films by using short organic ligands. Therefore, the roles of the organic ligands would be to provide stable colloids and a good passivation of the nanoparticle surface, as well as to enable the efficient assembly of the nanoparticles in the solid state. We report here an effective and reproducible process to deposi…

Materials sciencePhotoluminescencePassivationHalideNanoparticleQuantum yield02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesColloidChemical engineeringNanocrystalMaterials Chemistry0210 nano-technologyPerovskite (structure)Journal of Materials Chemistry C
researchProduct

Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control

2017

Quasi-2D perovskites with the BA : MA molar ratio equal to 3 : 3 show a remarkable PLQY exceeding 80%, thanks to the use of an electron donor as the passivating agent. These films have been applied in LEDs that exhibit high brightness exceeding 1000 cd m−2 and current efficiencies >3 cd A−1.

BrightnessPhotoluminescenceMaterials sciencePassivationQuantum yieldElectron donor02 engineering and technology010402 general chemistry01 natural sciencesCatalysislaw.inventionchemistry.chemical_compoundlawMaterials ChemistryThin filmPerovskite (structure)business.industryMetals and AlloysGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryCeramics and CompositesOptoelectronics0210 nano-technologybusinessLight-emitting diodeChemical Communications
researchProduct

Dipole reorientation and local density of optical states influence the emission of light-emittingelectrochemical cells

2020

Herein, we analyze the temporal evolution of the electroluminescence of light-emitting electrochemicalcells (LECs), a thin-film light-emitting device, in order to maximize the luminous power radiated bythese devices. A careful analysis of the spectral and angular distribution of the emission of LECsfabricated under the same experimental conditions allows describing the dynamics of the spatial regionfrom which LECs emit,i.e.the generation zone, as bias is applied. This effect is mediated by dipolereorientation within such an emissive region and its optical environment, since its spatial drift yields adifferent interplay between the intrinsic emission of the emitters and the local density of …

BrightnessMaterials sciencebusiness.industryAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and Astronomy02 engineering and technologyElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences3. Good health0104 chemical sciencesElectrochemical cellLuminous fluxElectroquímicaDipoleAngular distributionOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessMaterials
researchProduct

Low-dimensional iodide perovskite nanocrystals enable efficient red emission

2019

We report herein a simple ligand-assisted reprecipitation method at room temperature to synthesize mixed-cation hybrid organic–inorganic perovskite nanocrystals with low structural dimensionality.

chemistry.chemical_classificationMaterials sciencePhotoluminescenceNanotecnologiabusiness.industryBand gapIodide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesBlueshiftLaser linewidthNanocrystalchemistryOptoelectronicsGeneral Materials Science0210 nano-technologybusinessMaterialsVisible spectrumPerovskite (structure)Nanoscale
researchProduct

Twisted hexaazatrianthrylene: synthesis, optoelectronic properties and near-infrared electroluminescent heterojunctions thereof

2015

The synthesis, optoelectronic properties and near-infrared electroluminescent heterojunctions of a twisted and soluble 7,8,15,16,23,24-hexaazatrianthrylene derivative are reported.

chemistry.chemical_compoundMaterials sciencechemistrybusiness.industryNear-infrared spectroscopyMaterials ChemistryOptoelectronicsHeterojunctionGeneral ChemistryElectroluminescencebusinessDerivative (chemistry)Journal of Materials Chemistry C
researchProduct

Peripheral halo-functionalization in [Cu(N^N)(P^P)]+ emitters: influence on the performances of light-emitting electrochemical cells

2016

A series of heteroleptic [Cu(N^N)(P^P)][PF6] complexes is described in which P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 4,4′-diphenyl-6,6′-dimethyl-2,2′-bipyridine substituted in the 4-position of the phenyl groups with atom X (N^N = 1 has X = F, 2 has X = Cl, 3 has X = Br, 4 has X = I; the benchmark N^N ligand with X = H is 5). These complexes have been characterized by multinuclear NMR spectroscopy, mass spectrometry, elemental analyses and cyclic voltammetry; representative single crystal structures are also reported. The solution absorption spectra are characterized by high energy bands (arising from ligand-c…

PhotoluminescenceAbsorption spectroscopyChemistryLigandXantphosAnalytical chemistry02 engineering and technologyNuclear magnetic resonance spectroscopyElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundCyclic voltammetry0210 nano-technologySingle crystalDalton Transactions
researchProduct

Luminescent copper(i) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands

2018

Heteroleptic [Cu(P^P)(N^N)][PF6] complexes, where N^N is a halo-substituted 2,2'-bipyridine (bpy) and P^P is either bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9- dimethylxanthene (xantphos) have been synthesized and investigated. To stabilize the tetrahedral geometry of the copper(I) complexes, the steric demands of the bpy ligands have been increased by introducing 6- or 6,6'-halo-substituents in 6,6'-dichloro-2,2'-bipyridine (6,6'-Cl2bpy), 6-bromo-2,2'- bipyridine (6-Brbpy) and 6,6'-dibromo-2,2'-bipyridine (6,6'-Br2bpy). The solid-state structures of [Cu(POP)(6,6'-Cl2bpy)][PF6], [Cu(xantphos)(6,6'-Cl2bpy)][PF6].CH2Cl2, [Cu(POP)(6-Brbpy)][PF6] and [Cu(xantp…

Materials scienceXantphosF100F200Tetrahedral molecular geometrychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopper22'-Bipyridine0104 chemical sciencesInorganic ChemistryCrystallographyBipyridinechemistry.chemical_compoundchemistryDensity functional theoryTriplet state0210 nano-technologySingle crystalDalton Transactions
researchProduct

Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids

2019

A simple method to obtain bright photoluminescent wide bandgap mixed‐halide 3D perovskites is reported. The materials are prepared by dry mechanochemical synthesis (ball‐milling) starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. The structural characterization suggests that the additive does not participate in the crystal structure of the perovskite, which remains unvaried even with high loading of amantadine hydrochloride. By simple stoichiometric control of the halide precursors, the photoluminescence can be finely tuned from the UV to the green part of the visible spectrum. Photoluminescence…

PhotoluminescenceMaterials sciencePassivation02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsChemical engineeringMaterials nanoestructurats0210 nano-technologyLuminescenceMaterialsPerovskite (structure)
researchProduct

Semitransparent near-infrared Sn–Pb hybrid perovskite photodetectors

2022

We report semitransparent NIR perovskite photodetectors based on tin–lead hybrid perovskites, by using very thin film perovskite layers and transparent indium tin oxide electrodes.

Materials ChemistryGeneral ChemistryJournal of Materials Chemistry C
researchProduct

Molecular Iodine for a General Synthesis of Binary and Ternary Inorganic and Hybrid Organic-inorganic Iodide Nanocrystals

2018

We report the synthesis of various binary and ternary inorganic and hybrid organic–inorganic iodide nanocrystals (NCs) starting from molecular iodine (I2). The synthesis described herein utilizes a reaction between I2 and oleylamine, which results in oleylammonium iodide, an iodide precursor that can be directly used in the preparation of iodide-based NCs. The generality of the synthesis was demonstrated by synthesizing KI, RbI, CsI, AgI, CsPbI3, FAPbI3, Cs4PbI6, Cs3Bi2I9, FA3Bi2I9, and RbAg4I5 NCs. Furthermore, the syntheses are facile and are carried out in vials heated on a hot plate in air. They exhibit not only narrow size distributions, but also, in the case of lead-based perovskites …

chemistry.chemical_classificationMaterials sciencePhotoluminescenceInfraredNanotecnologiaGeneral Chemical EngineeringInorganic chemistryIodidechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyIodine01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryNanocrystalOleylamineMaterials Chemistry0210 nano-technologyTernary operationMaterialsPerovskite (structure)
researchProduct

On the Unique Reactivity of Pd(OAc)2with Organic Azides: Expedient Synthesis of Nitriles and Imines

2013

Organic azides are well-established as versatile compounds that can act as precursors of different heterocycles (triazoles, triazolines, tetrazoles, etc.) or other nitrogen-containing compounds, such as amines (Staudinger reduction, Curtius rearrangement) or imines (Schmidt rearrangement, aza-Wittig reaction).1 Besides the ubiquitous copper-catalysed azide–alkyne cycloaddition reaction,2 two applications of organic azides have recently attracted the interest of the synthetic community: 1) the preparation of aziridines through the generation of nitrenes3 and 2) the synthesis of nitriles. We were particularly interested in the latter application, owing to the importance of the cyano group in …

chemistry.chemical_classificationNitrileChemistryOrganic ChemistryImineAlkyneCyanationCatalysisCycloadditionInorganic Chemistrychemistry.chemical_compoundBenzonitrileOrganic chemistryOrganic synthesisAzidePhysical and Theoretical ChemistryChemCatChem
researchProduct

[Cu(P^P)(N^N)][PF6] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthio-substituted 2,2'-bipyridine ligands for lig…

2018

We report a series of [Cu(P^P)(N^N)][PF6] complexes with P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 6-methoxy-2,2′-bipyridine (MeObpy), 6-ethoxy-2,2′-bipyridine (EtObpy), 6-phenyloxy-2,2′-bipyridine (PhObpy), 6-methylthio-2,2′-bipyridine (MeSbpy), 6-ethylthio-2,2′-bipyridine (EtSbpy) and 6-phenylthio-2,2′-bipyridine (PhSbpy). The single crystal structures of all twelve compounds have been determined and confirm chelating modes for each N^N and P^P ligand, and a distorted tetrahedral geometry for copper(I). For the xantphos-containing complexes, the asymmetrical bpy ligand is arranged with the 6-substituent lying …

XantheneMaterials scienceXantphosLigandTetrahedral molecular geometryEther02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMedicinal chemistry22'-Bipyridine0104 chemical scienceschemistry.chemical_compoundchemistryMaterials ChemistryAlkoxy group0210 nano-technologySingle crystal
researchProduct

Enhancing the photoluminescence quantum yields of blue-emitting cationic iridium(iii) complexes bearing bisphosphine ligands

2016

EZ-C acknowledges the University of St Andrews for financial support. We thank Johnson Matthey and Umicore AG for the gift of materials and Cihang Yu for the preparation of isopropxantphos. We thank Dr. Nail Shaveleev for the synthesis of NMS25. IDWS and AKB acknowledge support from EPSRC (EP/J01771X). This work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO) MAT2014-55200. Herein we present a structure-property relationship study of thirteen cationic iridium (III) complexes of the form of [Ir(C^N)2(P^P)]PF6 in both solution and the solid state through systematic evaluation of six bisphosphine (P^P) ligands (xantphos, dpephos, dppe, Dppe, nixantphos and is…

PhotoluminescenceXantphosLigandNDASCationic polymerizationchemistry.chemical_element02 engineering and technologyBite angleQD Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistryElectrochemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryQDIridium0210 nano-technologyLuminescenceInorganic Chemistry Frontiers
researchProduct

Highly luminescent perovskite–aluminum oxide composites

2015

In this communication we report on the preparation of CH3NH3PbBr3 perovskite/Al2O3 nanoparticle composites in a thin film configuration and demonstrate their high photoluminescence quantum yield. The composite material is solution-processed at low temperature, using stable alumina nanoparticle dispersions. There is a large influence of the alumina nanoparticle concentration on the perovskite morphology and on its photoluminescence.

Morphology (linguistics)PhotoluminescenceMaterials scienceF100F200NanoparticleQuantum yieldGeneral ChemistryMaterials ChemistryThin filmComposite materialLuminescenceAluminum oxidePerovskite (structure)
researchProduct

Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles

2016

Methylammonium lead bromide nanoparticles are synthetized with a new ligand (11-aminoundecanoic acid hydrobromide) by a non-template method. Upon dispersion in toluene they show a remarkable photoluminescence quantum yield of 80%. In addition, the bifunctional ligand allows anchoring of the nanoparticles on a variety of conducting and semiconducting surfaces, showing bright photoluminescence with a quantum yield exceeding 50%. This opens a path for the simple and inexpensive preparation of multilayer light-emitting devices. NRF (Natl Research Foundation, S’pore) ASTAR (Agency for Sci., Tech. and Research, S’pore) Accepted version

Materials sciencePhotoluminescencePhotoluminescent Thin FilmsPerovskite NanoparticlesInorganic chemistryNanoparticleQuantum yield02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundMaterials ChemistryThin filmBifunctionalPerovskite (structure):Materials [Engineering]LigandMetals and AlloysGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringchemistryCeramics and Composites0210 nano-technologyDispersion (chemistry)Chemical Communications
researchProduct

CCDC 1562407: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(6-(ethylsulfanyl)-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphate diethyl ether solvate
researchProduct

CCDC 1562410: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(6-ethoxy-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphate
researchProduct

CCDC 1423252: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

Space GroupCrystallographyCrystal System(bis(2-(Diphenylphosphino)phenyl) ether)-bis(2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphate dichloromethane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Enhancing the photoluminescence quantum yields of blue-emitting cationic iridium(III) complexes bearing bisphosphine ligands (dataset)

2017

researchProduct

CCDC 1423251: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters((99-Dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-bis(2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphate dichloromethane solvate hemihydrateExperimental 3D Coordinates
researchProduct

CCDC 1584756: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1486906: Experimental Crystal Structure Determination

2016

Related Article: Fabian Brunner, Laura Martínez-Sarti, Sarah Keller, Antonio Pertegás, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Catherine E. Housecroft|2016|Dalton Trans.|45|15180|doi:10.1039/C6DT02665F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(44'-bis(4-bromophenyl)-66'-dimethyl-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper(i) hexafluorophosphate diethyl ether solvate hemihydrate
researchProduct

CCDC 1584755: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1486907: Experimental Crystal Structure Determination

2016

Related Article: Fabian Brunner, Laura Martínez-Sarti, Sarah Keller, Antonio Pertegás, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Catherine E. Housecroft|2016|Dalton Trans.|45|15180|doi:10.1039/C6DT02665F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(44'-bis(4-iodophenyl)-66'-dimethyl-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper(i) hexafluorophosphate diethyl ether solvateExperimental 3D Coordinates
researchProduct

CCDC 1486908: Experimental Crystal Structure Determination

2016

Related Article: Fabian Brunner, Laura Martínez-Sarti, Sarah Keller, Antonio Pertegás, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Catherine E. Housecroft|2016|Dalton Trans.|45|15180|doi:10.1039/C6DT02665F

Space GroupCrystallographyCrystal System(44'-bis(4-fluorophenyl)-66'-dimethyl-22'-bipyridine)-((oxydi-21-phenylene)bis(diphenylphosphine))-copper(i) hexafluorophosphate hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562409: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal Structure(6-methoxy-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane diethyl ether solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1423253: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

Space GroupCrystallographyCrystal SystemCrystal Structure(Ethene-12-diylbis(diphenylphosphine))-bis(2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphate dichloromethane solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1535142: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(66'-dichloro-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethylxanthene)-copper(i) hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1562458: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(6-(methylsulfanyl)-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane diethyl ether solvate
researchProduct

CCDC 1423259: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

Space GroupCrystallographybis(35-difluoro-2-(4-mesitylpyridin-2-yl)phenyl)-(ethene-12-diylbis(diphenylphosphine))-iridium hexafluorophosphate dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1583875: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethylxanthene)-copper(i) hexafluorophosphate diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1584757: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562460: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallography(6-(ethylsulfanyl)-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562411: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal System(6-ethoxy-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane solvate hemihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1535141: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1486911: Experimental Crystal Structure Determination

2016

Related Article: Fabian Brunner, Laura Martínez-Sarti, Sarah Keller, Antonio Pertegás, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Catherine E. Housecroft|2016|Dalton Trans.|45|15180|doi:10.1039/C6DT02665F

(66'-dimethyl-44'-diphenyl-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper(i) hexafluorophosphateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1584754: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562408: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal System(6-methoxy-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1423255: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

Space GroupCrystallographybis(2-(4-Mesitylpyridyl)phenyl-CN)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-iridium hexafluorophosphate dichloromethane diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562448: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

(6-(phenylsulfanyl)-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562457: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(6-phenoxy-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane solvate
researchProduct

CCDC 1423254: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

(46-bis(Diphenylphosphino)-10H-phenoxazine)-bis(2-(pyridin-2-yl)phenyl)-iridium hexafluorophosphate dichloromethane solvate hemihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562453: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(6-(phenylsulfanyl)-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 1486909: Experimental Crystal Structure Determination

2016

Related Article: Fabian Brunner, Laura Martínez-Sarti, Sarah Keller, Antonio Pertegás, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Catherine E. Housecroft|2016|Dalton Trans.|45|15180|doi:10.1039/C6DT02665F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(44'-bis(4-fluorophenyl)-66'-dimethyl-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper(i) hexafluorophosphate diethyl ether solvateExperimental 3D Coordinates
researchProduct

CCDC 1486910: Experimental Crystal Structure Determination

2016

Related Article: Fabian Brunner, Laura Martínez-Sarti, Sarah Keller, Antonio Pertegás, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Catherine E. Housecroft|2016|Dalton Trans.|45|15180|doi:10.1039/C6DT02665F

Space GroupCrystallographybis(44'-bis(4-fluorophenyl)-66'-dimethyl-22'-bipyridine)-copper hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562412: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

(6-phenoxy-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphate dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1535144: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(66'-dichloro-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 1423258: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(35-difluoro-2-(4-mesitylpyridin-2-yl)phenyl)-((oxydi-21-phenylene)bis(diphenylphosphine))-iridium hexafluorophosphate diethyl ether solvateExperimental 3D Coordinates
researchProduct

CCDC 1584752: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562449: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal Structure(6-(methylsulfanyl)-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1423257: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

Space GroupCrystallographyCrystal SystemCrystal Structurebis(35-difluoro-2-(4-mesitylpyridin-2-yl)phenyl)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-iridium hexafluorophosphateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1584753: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1535143: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(44'-dibromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1423256: Experimental Crystal Structure Determination

2015

Related Article: Diego Rota Martir, Ashu K. Bansal, Vincent Di Mascio, David B. Cordes, Adam F. Henwood, Alexandra M. Z. Slawin, Paul C. J. Kamer, Laura Martínez-Sarti, Antonio Pertegás, Henk J. Bolink, Ifor D. W. Samuel, Eli Zysman-Colman|2016|Inorg.Chem.Front.|3|218|doi:10.1039/C5QI00177C

Space GroupCrystallographyCrystal SystemCrystal Structurebis(35-Difluoro-2-(pyridin-2-yl)phenyl-CN)-(ethene-12-diylbis(diphenylphosphine))-iridium hexafluorophosphate diethyl ether solvateCell ParametersExperimental 3D Coordinates
researchProduct