0000000001300242
AUTHOR
Christian Plenk
Folded Cr12Co12 and Cr12Ni12 wheels: a sharp increase in nuclearity of heterometallic chromium rings
Two novel record-sized heterometallic Cr12M12 (M = Co, Ni) chromium wheels with an unusual saddle-like architecture are created by reacting appropriate precursor complexes with the bridging ligand 2,2'-bipyrimidine.
A Click‐Functionalized Single‐Molecule Magnet Based on Cobalt(II) and Its Analogous Manganese(II) and Zinc(II) Compounds
A mononuclear CoII single-molecule magnet suitable for click chemistry was investigated. [M(oda)(aterpy)] complexes (oda2– = oxodiacetate, aterpy = 4′-azido-2,2′:6′,2″-terpyridine) with M = MnII, ZnII, and CoII were synthesized as azide-functionalized building blocks for the copper-catalyzed azide–alkyne cycloaddition reaction. The required structural integrity of the complexes in solution was proven in great detail by using ESI-MS and NMR spectroscopy. For the six-coordinate [Co(oda)(aterpy)] complex, single-molecule magnet behavior was confirmed with an effective energy barrier of 4.2 cm–1.
12-MC-4 metallacrowns as versatile tools for SMM research
Abstract The outstanding chemical and structural features of 12-MC-4 metallacrowns allow for versatile applications in magneto-chemical research. Herein, we present three novel approaches. The heterometallic, or magnetic director approach, provides a targeted way to attain unusual high-spin ground states in 12-MC-4 complexes. Further, the first cobalt metallacrowns of salicylhydroxamic acid have been established. They comprise a diamagnetic scaffold which facilitates an engineering of the magnetism of the central guest ion and thus three novel SMMs based on single Co(II) ions have been established. Finally, click chemistry has been utilized to realize a linkage of an azide-functionalized mo…
Tailoring the Exchange Interaction in Covalently Linked Basic Carboxylate Clusters through Bridging Ligand Selection
We are reporting new dimeric units of basic carboxylates bearing the {Fe III 2M IIO} motif for M = Co and Ni, covalently bound through the tetradentate bridging (LL) 2,2′-azopyiridine (azpy) and 2,3-di(2-pyridyl)quinoxaline ligands (dpq). We structurally characterized the hexanuclear clusters, and their magnetic properties have been fully analyzed. DFT calculations have been performed as a supplementary tool. All results evidence a weak antiferromagnetic interaction through the bridging ligands between isolated spin ground states arising from intra-Fe 2MO core exchange couplings. Together with the pioneer 2,2′-bipyrimidine bridged systems, the new complexes reported constitute a family of c…
Rational linkage of magnetic molecules using click chemistry
Established CuAAC click reactions are used for the first time to assemble magnetic molecules to an extended molecular arrangement. This novel synthetic approach is expected to be a general approach to link SMMs as an important precondition to realize quantum computing.
CCDC 965183: Experimental Crystal Structure Determination
Related Article: Christian Plenk, Jasmin Krause, Eva Rentschler|2015|Eur.J.Inorg.Chem.||370|doi:10.1002/ejic.201402955
CCDC 2104301: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 1027635: Experimental Crystal Structure Determination
Related Article: Christian Plenk, Jasmin Krause, Eva Rentschler|2015|Eur.J.Inorg.Chem.||370|doi:10.1002/ejic.201402955
CCDC 2104300: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 2104296: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 978061: Experimental Crystal Structure Determination
Related Article: Christian Plenk, Thomas Weyhermüller, Eva Rentschler|2014|Chem.Commun.|50|3871|doi:10.1039/C4CC00895B
CCDC 910513: Experimental Crystal Structure Determination
Related Article: Christian Plenk, Jasmin Krause, Martin Beck, Eva Rentschler|2015|Chem.Commun.|51|6524|doi:10.1039/C5CC00595G
CCDC 2104302: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 2104297: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 2104303: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 2104295: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 965184: Experimental Crystal Structure Determination
Related Article: Christian Plenk, Jasmin Krause, Eva Rentschler|2015|Eur.J.Inorg.Chem.||370|doi:10.1002/ejic.201402955
CCDC 978062: Experimental Crystal Structure Determination
Related Article: Christian Plenk, Thomas Weyhermüller, Eva Rentschler|2014|Chem.Commun.|50|3871|doi:10.1039/C4CC00895B
CCDC 2104298: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 2104299: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012
CCDC 2104304: Experimental Crystal Structure Determination
Related Article: Peter Happ, Christian Plenk, Eva Rentschler|2015|Coord.Chem.Rev.|289-290|238|doi:10.1016/j.ccr.2014.11.012