0000000001300537

AUTHOR

S. Koirala

showing 45 related works from this author

Rosenbluth Separation of the π^{0} Electroproduction Cross Section.

2016

We present deeply virtual $\pi^0$ electroproduction cross-section measurements at $x_B$=0.36 and three different $Q^2$--values ranging from 1.5 to 2 GeV$^2$, obtained from experiment E07-007 that ran in the Hall A at Jefferson Lab. The Rosenbluth technique was used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component, and thus is far from the asymptotic limit predicted by perturbative Quantum Chromodynamics. An indication of a non-zero longitudinal contribution is provided by the interference term $\sigma_{LT}$ also measured. Results are compared with several models based on the leading twist approach of G…

Particle physicslongitudinalinterferenceGeneral Physics and Astronomyparton: distribution functionPartonhard exclusive electroproduction; mesons[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicspi: distribution amplitudegeneralized parton distribution: transversityPiondeep inelastic scattering0103 physical scienceshard exclusive electroproduction[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]quantum chromodynamics: perturbation theory010306 general physicsNuclear ExperimentNuclear ExperimentmesonsQuantum chromodynamicsPhysics010308 nuclear & particles physicsscattering amplitudemomentum transferSigmanucleon: generalized parton distributionScattering amplitudetransverseDistribution (mathematics)Amplitudepi0: electroproductiontwistHigh Energy Physics::ExperimentNucleonchannel cross section: measuredJefferson Labexperimental resultsPhysical review letters
researchProduct

A glimpse of gluons through deeply virtual compton scattering on the proton

2017

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…

Genetics and Molecular Biology (all)PhotonProtonHigh Energy Physics::LatticeNuclear TheoryGeneral Physics and AstronomyVirtual particleparton: distribution functionBiochemistry01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]p: structure functionNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]lcsh:ScienceNuclear ExperimentNuclear ExperimentPhysicsenergy: highMultidisciplinarystrong interactionChemistry (all)QCompton scattering: form factorphoton: energy spectrumHigh Energy Physics - Phenomenologyconfinementelectron p --> electron p photonchannel cross section: measuredQuarkelectron p: deep inelastic scatteringParticle physicselectron: polarized beamScienceStrong interactionFOS: Physical sciencesBethe-Heitler[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ArticleGeneral Biochemistry Genetics and Molecular Biologyenergy dependencequarkPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emissiondeeply virtual Compton scattering0103 physical sciencesstructure010306 general physicsquantum mechanics: interference010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCompton scatteringGeneral ChemistrygluonsensitivityGluon[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmalcsh:Q[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentholographyChemistry (all); Biochemistry Genetics and Molecular Biology (all); Physics and Astronomy (all)photon: virtualexperimental results
researchProduct

Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach

2020

FLUXNET comprises globally distributed eddy-covariance-based estimates of carbon fluxes between the biosphere and the atmosphere. Since eddy covariance flux towers have a relatively small footprint and are distributed unevenly across the world, upscaling the observations is necessary to obtain global-scale estimates of biosphere–atmosphere exchange. Based on cross-consistency checks with atmospheric inversions, sun-induced fluorescence (SIF) and dynamic global vegetation models (DGVMs), here we provide a systematic assessment of the latest upscaling efforts for gross primary production (GPP) and net ecosystem exchange (NEE) of the FLUXCOM initiative, where different machine learning methods…

Meteorologie en Luchtkwaliteit010504 meteorology & atmospheric sciencesMeteorology and Air Qualitylcsh:LifeEddy covarianceFlux010501 environmental sciencesAtmospheric sciences01 natural sciencesCarbon cycle03 medical and health sciencesFluxNetLaboratory of Geo-information Science and Remote Sensinglcsh:QH540-549.5ddc:550Life ScienceLaboratorium voor Geo-informatiekunde en Remote SensingBiogeosciences[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentScalingEcology Evolution Behavior and Systematics030304 developmental biology0105 earth and related environmental sciencesCarbon fluxEarth-Surface ProcessesSDG 15 - Life on Land[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere0303 health sciencesWIMEKlcsh:QE1-996.5Carbon sinkBiospherePrimary production15. Life on landlcsh:GeologyEarth scienceslcsh:QH501-53113. Climate actionGreenhouse gasEnvironmental sciencelcsh:Ecology
researchProduct

Rosenbluth separation of the $\pi^0$ Electroproduction Cross Section off the Neutron

2017

We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0.36. The $ed \to ed\pi^0$ cross sections are found compatible with the small values expected from theoretical models. The $en \to en\pi^0$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucle…

longitudinalNuclear Theoryn: structure function[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]momentum transfer dependenceelectron n: scatteringHigh Energy Physics - Experimentgeneralized parton distribution: transversity[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hard exclusive electroproductionrecoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]polarization: transverse[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear Experimentmesonsflavorgeneralized parton distributionsscatteringgeneralized parton distributions; hard exclusive electroproduction; mesons; scatteringdeuteron: structure functionelectron deuteron --> electron deuteron pi0electron deuteron: deep inelastic scatteringnucleon: generalized parton distributionphoton: polarizationcoherencepi0: electroproductionHigh Energy Physics::Experimentexperimental results
researchProduct

Deeply virtual compton scattering off the neutron.

2007

The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\vec e},e'\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

QuarkPhysicsParticle physicsPhoton010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyNuclear TheoryCompton scatteringFOS: Physical sciencesGeneral Physics and AstronomyVirtual particleParton[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsIsospin0103 physical sciences25.30.-c 13.60.Fz 13.85.Hd 14.20.DhHigh Energy Physics::ExperimentNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear ExperimentPhysical review letters
researchProduct

"Table 28" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 36" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 17" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 40" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 39" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 9" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 22" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 31" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 34" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 33" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 6" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 11" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 37" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 29" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 1" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 21" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 25" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 2" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 32" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 5" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 16" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 24" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 23" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 14" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 26" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 20" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 8" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 10" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 13" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 27" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 38" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 35" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 15" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 30" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 19" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 12" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 4" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 3" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 18" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 7" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct