0000000001300539

AUTHOR

J.j. Lerose

Rosenbluth separation of the $\pi^0$ Electroproduction Cross Section off the Neutron

We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0.36. The $ed \to ed\pi^0$ cross sections are found compatible with the small values expected from theoretical models. The $en \to en\pi^0$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucle…

research product

"Table 28" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 36" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 17" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 40" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 39" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 9" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 22" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 31" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 34" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 33" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 6" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 11" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 37" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 29" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 1" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 21" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 25" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 2" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 32" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 5" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 16" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 24" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 23" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 14" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 26" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 20" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 8" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 10" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 13" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 27" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 38" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 35" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 15" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 30" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 19" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 12" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 4" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 3" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 18" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product

"Table 7" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

research product