0000000001300603

AUTHOR

Birger Dittrich

Approaching an experimental electron density model of the biologically active trans ‐epoxysuccinyl amide group—Substituent effects vs. crystal packing

The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us…

research product

Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)

After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.

research product

Plasmonic twinned silver nanoparticles with molecular precision

Determining the structures of nanoparticles at atomic resolution is vital to understand their structure–property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle dis…

research product

Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells

This paper reports co-crystallization of two atomically precise, different-size ligand-stabilized nanoclusters, a spherical (AuAg)267(SR)80 and a smaller trigonal-prismatic (AuAg)45(SR)27(PPh3)6 in 1:1 ratio, characterized fully by X-ray crystallographic analysis (SR = 2,4-SPhMe2). The larger cluster has a four concentric-shell icosahedral structure of Ag@M12@M42@M92@Ag120(SR)80 (M = Au or Ag) with the inner-core M147 icosahedron observed here for metal nanoparticles. The cluster has an open electron shell of 187 delocalized electrons, fully metallic, plasmonic behavior, and a zero HOMO-LUMO energy gap. The smaller cluster has an 18-electron shell closing, a notable HOMO-LUMO energy gap and…

research product

CCDC 1498221: Experimental Crystal Structure Determination

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

research product

CCDC 1496141: Experimental Crystal Structure Determination

Related Article: Huayan Yang, Yu Wang, Xi Chen, Xiaojing Zhao, Lin Gu, Huaqi Huang, Juanzhu Yan, Chaofa Xu, Gang Li, Junchao Wu, Alison J. Edwards, Birger Dittrich, Zichao Tang, Dongdong Wang, Lauri Lehtovaara, Hannu Häkkinen, Nanfeng Zheng|2016|Nat.Commun.|7|12809|doi:10.1038/ncomms12809

research product

CCDC 977799: Experimental Crystal Structure Determination

Related Article: Ming W. Shi, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Thomas C. Schmidt, Peter Luger, Stefan Mebs, Birger Dittrich, Yu-Sheng Chen, Joanna M. Bąk, Dylan Jayatilaka, Charles S. Bond, Michael J. Turner, Scott G. Stewart, Mark A. Spackman and Simon Grabowsky|2015|New J.Chem.|39|1628|doi:10.1039/C4NJ01503G

research product

CCDC 1839942: Experimental Crystal Structure Determination

Related Article: Juanzhu Yan, Sami Malola, Chengyi Hu, Jian Peng, Birger Dittrich, Boon K. Teo, Hannu Häkkinen, Lansun Zheng, Nanfeng Zheng|2018|Nat.Commun.|9|3357|doi:10.1038/s41467-018-05584-9

research product

CCDC 1496142: Experimental Crystal Structure Determination

Related Article: Huayan Yang, Yu Wang, Xi Chen, Xiaojing Zhao, Lin Gu, Huaqi Huang, Juanzhu Yan, Chaofa Xu, Gang Li, Junchao Wu, Alison J. Edwards, Birger Dittrich, Zichao Tang, Dongdong Wang, Lauri Lehtovaara, Hannu Häkkinen, Nanfeng Zheng|2016|Nat.Commun.|7|12809|doi:10.1038/ncomms12809

research product

CCDC 1498219: Experimental Crystal Structure Determination

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

research product

CCDC 1498220: Experimental Crystal Structure Determination

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

research product

CCDC 1839941: Experimental Crystal Structure Determination

Related Article: Juanzhu Yan, Sami Malola, Chengyi Hu, Jian Peng, Birger Dittrich, Boon K. Teo, Hannu Häkkinen, Lansun Zheng, Nanfeng Zheng|2018|Nat.Commun.|9|3357|doi:10.1038/s41467-018-05584-9

research product