6533b871fe1ef96bd12d25e2
RESEARCH PRODUCT
Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells
Nanfeng ZhengSami MalolaHannu HäkkinenJian PengJuanzhu YanBoon K. TeoLan-sun ZhengBirger DittrichChengyi Husubject
Materials scienceBand gapIcosahedral symmetryScienceElectron shellGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleNanoclustersco-crystallizationDelocalized electronAtomCluster (physics)Physics::Atomic and Molecular Clustersmetal nanoparticleslcsh:SciencePlasmonMultidisciplinaryQGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemical physicslcsh:Qnanohiukkaset0210 nano-technologydescription
This paper reports co-crystallization of two atomically precise, different-size ligand-stabilized nanoclusters, a spherical (AuAg)267(SR)80 and a smaller trigonal-prismatic (AuAg)45(SR)27(PPh3)6 in 1:1 ratio, characterized fully by X-ray crystallographic analysis (SR = 2,4-SPhMe2). The larger cluster has a four concentric-shell icosahedral structure of Ag@M12@M42@M92@Ag120(SR)80 (M = Au or Ag) with the inner-core M147 icosahedron observed here for metal nanoparticles. The cluster has an open electron shell of 187 delocalized electrons, fully metallic, plasmonic behavior, and a zero HOMO-LUMO energy gap. The smaller cluster has an 18-electron shell closing, a notable HOMO-LUMO energy gap and a molecule-like optical spectrum. This is the first direct demonstration of the simultaneous presence of competing effects (closing of atom vs. electron shells) in nanocluster synthesis and growth, working together to form a co-crystal of different-sized clusters. This observation suggests a strategy that may be helpful in the design of other nanocluster systems via co-crystallization.
year | journal | country | edition | language |
---|---|---|---|---|
2018-08-01 | Nature Communications |