Search results for "lcsh:Q"

showing 10 items of 7061 documents

Dual attachment pairs in categorically-algebraic topology

2011

[EN] The paper is a continuation of our study on developing a new approach to (lattice-valued) topological structures, which relies on category theory and universal algebra, and which is called categorically-algebraic (catalg) topology. The new framework is used to build a topological setting, based in a catalg extension of the set-theoretic membership relation "e" called dual attachment, thereby dualizing the notion of attachment introduced by the authors earlier. Following the recent interest of the fuzzy community in topological systems of S. Vickers, we clarify completely relationships between these structures and (dual) attachment, showing that unlike the former, the latter have no inh…

(pre)image operatorWeak topologyTopological algebralcsh:Mathematicslcsh:QA299.6-433Quasi-framelcsh:AnalysisTopological spacelcsh:QA1-939Topological vector spaceHomeomorphismAlgebraDual attachment pair(LM)-fuzzy topologyTrivial topologyCategory of topological spacesVarietyGeometry and TopologyGeneral topology(lattice-valued) categorically-algebraic topologyTopological systemQuasi-coincidence relationSpatialization(localic) algebraMathematics
researchProduct

The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties

2017

A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 +/- 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same a globin combined with two copies of three very similar beta subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology.…

---0301 basic medicinegenetic structuresProtein ConformationGreenlandlcsh:MedicineRESONANCE RAMAN-SPECTRAHETERODONTUS-PORTUSJACKSONISpectrum Analysis RamanBiochemistrychemistry.chemical_compoundHemoglobinsProtein structureAMINO-ACID SEQUENCEAnimal CellsSequence Analysis ProteinRed Blood CellsUreaNOTOTHENIOID FISHESPost-Translational Modificationlcsh:ScienceHemeChondrichthyesMultidisciplinarybiologyChemistryOrganic CompoundsChemical ReactionsVertebrateEukaryotaMOLECULAR ADAPTATIONSMicrocephalusGlobinsChemistryBiochemistryOptical EquipmentVertebratesPhysical SciencesEngineering and TechnologyCellular TypesResearch ArticleEnvironmental MonitoringProtein BindingQUATERNARY STRUCTURESAllosteric regulationEquipmentSTRETCHING FREQUENCIESHeme03 medical and health sciencesOXYGEN-BINDINGbiology.animalAnimals14. Life underwaterGlobinHemoglobinPhotolysisBlood Cells030102 biochemistry & molecular biologyLaserslcsh:ROrganic ChemistryOrganismsChemical CompoundsBiology and Life SciencesProteinsxxxCell Biologybiology.organism_classificationCARTILAGINOUS FISHOxygen030104 developmental biologySomniosusFishSharkslcsh:QHemoglobinProtein MultimerizationELASMOBRANCH HEMOGLOBINElasmobranchiiPLoS ONE
researchProduct

Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers

2020

We report on spin transport in state-of-the-art epitaxial monolayer graphene based 2D-magnetic tunnel junctions (2D-MTJs). In our measurements, supported by ab-initio calculations, the strength of interaction between ferromagnetic electrodes and graphene monolayers is shown to fundamentally control the resulting spin signal. In particular, by switching the graphene/ferromagnet interaction, spin transport reveals magneto-resistance signal MR > 80% in junctions with low resistance × area products. Descriptions based only on a simple K-point filtering picture (i.e. MR increase with the number of layers) are not sufficient to predict the behavior of our devices. We emphasize that hybridization …

/120Materials scienceScienceGeneral Physics and AstronomyGenetics and Molecular Biology02 engineering and technologyMaterials science Nanoscience and technology010402 general chemistry01 natural sciencesSignalArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionEngineeringNanoscience and technologylawMonolayerProximity effect (superconductivity)/128/639/925[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]lcsh:ScienceSpin-½[PHYS]Physics [physics]/639/166/639/301MultidisciplinarySpintronicsCondensed matter physicsNanotecnologiaGraphenePhysicsQ/639/766General ChemistryCiència dels materials5104 Condensed Matter Physics021001 nanoscience & nanotechnologyMaterials science0104 chemical sciencesFerromagnetismGeneral BiochemistryDensity of stateslcsh:QCondensed Matter::Strongly Correlated Electrons/1190210 nano-technology51 Physical SciencesNature Communications
researchProduct

The effects of environment on Arctica islandica shell formation and architecture

2017

Mollusks record valuable information in their hard parts that reflect ambient environmental conditions. For this reason, shells can serve as excellent archives to reconstruct past climate and environmental variability. However, animal physiology and biomineralization, which are often poorly un- derstood, can make the decoding of environmental signals a challenging task. Many of the routinely used shell-based proxies are sensitive to multiple different environmental and physiological variables. Therefore, the identification and in- terpretation of individual environmental signals (e.g., water temperature) often is particularly difficult. Additional prox- ies not influenced by multiple enviro…

/dk/atira/pure/sustainabledevelopmentgoals/life_below_waterlcsh:Geologylcsh:QH501-531550 Earth scienceslcsh:QH540-549.5lcsh:QE1-996.5lcsh:Lifelcsh:EcologySDG 14 - Life Below Water550 Geowissenschaften
researchProduct

F-contractions of Hardy–Rogers-type and application to multistage decision

2016

We prove fixed point theorems for F-contractions of Hardy–Rogers type involving self-mappings defined on metric spaces and ordered metric spaces. An example and an application to multistage decision processes are given to show the usability of the obtained theorems.

010101 applied mathematicsCombinatoricsApplied Mathematics010102 general mathematicslcsh:QA299.6-433F-contractions of Hardy–Rogers type and application to multistage decision processeslcsh:Analysis0101 mathematicsType (model theory)01 natural sciencesAnalysisMathematicsNonlinear Analysis: Modelling and Control
researchProduct

A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

2016

For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magn…

010302 applied physicsCondensed matter physicsMagnetic momentChemistryAlloyGeneral Physics and Astronomy02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyAlkali metal01 natural scienceslcsh:QC1-999ElectronegativityMetalCondensed Matter::Materials ScienceLattice constantTransition metalGroup (periodic table)visual_art0103 physical sciencesengineeringvisual_art.visual_art_medium0210 nano-technologylcsh:PhysicsAIP Advances
researchProduct

Determination of fine magnetic structure of magnetic multilayer with quasi antiferromagnetic layer by using polarized neutron reflectivity analysis

2020

We carried out polarized neutron reflectivity (PNR) analysis to determine the fine magnetic structure of magnetic multilayers with quasi-antiferromagnetic (quasi-AFM) layers realized by 90-deg coupling using two Co90Fe10 layers, and quantitatively evaluated the magnetization of quasi-AFM layers. Two types of samples with different buffer layers, Ru buffer and a NiFeCr buffer, were investigated and the average angles between the respective magnetization of the two Co90Fe10 layers were estimated to be +/− 39 degrees and +/− 53 degrees. In addition, less roughness was found in the NiFeCr buffer sample resulting stronger 90-deg coupling. A perfect quasi-AFM is expected to be realized by a flat …

010302 applied physicsCouplingMaterials scienceCondensed matter physicsMagnetic structure530 PhysicsGeneral Physics and Astronomy02 engineering and technologySurface finish021001 nanoscience & nanotechnology530 Physik01 natural scienceslcsh:QC1-999Buffer (optical fiber)Magnetization0103 physical sciencesAntiferromagnetismNeutron0210 nano-technologyLayer (electronics)lcsh:Physics
researchProduct

Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices

2020

CA extern Antidot lattices are potential candidates to act as bit patterned media for data storage as they are able to trap nanoscale magnetic domains between two adjacent holes. Here, we demonstrate the combination of micromagnetic modeling and x-ray microscopy. Detailed simulation of these systems can only be achieved by micromagnetic modeling that takes thermal effects into account. For this purpose, a Landau-Lifshitz-Bloch approach is used here. The calculated melting of magnetic domains within the antidot lattice is reproduced experimentally by x-ray microscopy. Furthermore, we compare conventional scanning transmission x-ray microscopy with resolution enhanced ptychography. Hence, we …

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainbusiness.industryGeneral Physics and Astronomy02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesPtychographylcsh:QC1-999Lattice (order)0103 physical sciencesComputer data storagePatterned mediaThermalMicroscopyddc:5300210 nano-technologybusinessNanoscopic scalelcsh:PhysicsAIP Advances
researchProduct

Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticl…

2019

Metal Halide Perovskites (MHPs) have arisen as promising materials to construct cost-effective photovoltaic and light emission devices. The study of nonlinear optical properties of MHPs is necessary to get similar success in nonlinear photonic devices, which is practically absent in the literature. The determination of the third order nonlinear coefficients is typically done by the Z-scan technique, which is limited by the scattering of polycrystalline thin films. In this work, we have studied nonlinear optical properties of polycrystalline CH3NH3PbX3 (MAPbX3) thin films and colloidal CsPbX3 nanoparticles with three different bandgaps (X3 = I3, Br3, and Br1.5I1.5). Their bright generation o…

010302 applied physicsMaterials sciencePhotoluminescenceInfraredbusiness.industryScatteringBand gaplcsh:BiotechnologyGeneral Engineering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energylcsh:QC1-999lcsh:TP248.13-248.650103 physical sciencesOptoelectronicsGeneral Materials ScienceLight emissionPhotonicsThin film0210 nano-technologybusinessAbsorption (electromagnetic radiation)lcsh:PhysicsAPL Materials
researchProduct

Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals

2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).

010302 applied physicsMultidisciplinaryMaterials scienceMagnetic momentMagnetic structurelcsh:Rlcsh:MedicineFormal charge02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionIonBond lengthlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Density functional theorylcsh:Q0210 nano-technologyElectron paramagnetic resonanceGround statelcsh:ScienceScientific Reports
researchProduct