6533b825fe1ef96bd1281f2b

RESEARCH PRODUCT

Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers

Robert S. WeatherupSimon M-m DuboisSimon M-m DuboisFrédéric PetroffVictor ZatkoPierre SeneorBruno DlubakJean-christophe CharlierRegina GalceranAlbert FertStephan HofmannJohn RobertsonMarie-blandine MartinMarie-blandine MartinFlorian GodelMaëlis Piquemal-banciMarta Galbiati

subject

/120Materials scienceScienceGeneral Physics and AstronomyGenetics and Molecular Biology02 engineering and technologyMaterials science Nanoscience and technology010402 general chemistry01 natural sciencesSignalArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionEngineeringNanoscience and technologylawMonolayerProximity effect (superconductivity)/128/639/925[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]lcsh:ScienceSpin-½[PHYS]Physics [physics]/639/166/639/301MultidisciplinarySpintronicsCondensed matter physicsNanotecnologiaGraphenePhysicsQ/639/766General ChemistryCiència dels materials5104 Condensed Matter Physics021001 nanoscience & nanotechnologyMaterials science0104 chemical sciencesFerromagnetismGeneral BiochemistryDensity of stateslcsh:QCondensed Matter::Strongly Correlated Electrons/1190210 nano-technology51 Physical Sciences

description

We report on spin transport in state-of-the-art epitaxial monolayer graphene based 2D-magnetic tunnel junctions (2D-MTJs). In our measurements, supported by ab-initio calculations, the strength of interaction between ferromagnetic electrodes and graphene monolayers is shown to fundamentally control the resulting spin signal. In particular, by switching the graphene/ferromagnet interaction, spin transport reveals magneto-resistance signal MR > 80% in junctions with low resistance × area products. Descriptions based only on a simple K-point filtering picture (i.e. MR increase with the number of layers) are not sufficient to predict the behavior of our devices. We emphasize that hybridization effects need to be taken into account to fully grasp the spin properties (such as spin dependent density of states) when 2D materials are used as ultimately thin interfaces. While this is only a first demonstration, we thus introduce the fruitful potential of spin manipulation by proximity effect at the hybridized 2D material / ferromagnet interface for 2D-MTJs.

https://doi.org/10.1038/s41467-020-19420-6