0000000000164070

AUTHOR

Frédéric Petroff

Influence of alkylphosphonic acid grafting on the electronic and magnetic properties of La2/3Sr1/3MnO3 surfaces

Self-assembled monolayers (SAMs) are highly promising materials for molecular engineering of electronic and spintronics devices thanks to their surface functionalization properties. In this direction, alkylphosphonic acids have been used to functionalize the most common ferromagnetic electrode in organic spintronics: La2/3Sr1/3MnO3 (LSMO). However, a study on the influence of SAMs grafting on LSMO electronic and magnetic properties is still missing. In this letter, we probe the influence of alkylphosphonic acids-based SAMs on the electronic and magnetic properties of the LSMO surface using different spectroscopies. We observe by X-ray photoemission and X-ray absorption that the grafting of …

research product

Self-Assembled Monolayer-Functionalized Half-Metallic Manganite for Molecular Spintronics

(La,Sr)MnO(3) manganite (LSMO) has emerged as the standard ferromagnetic electrode in organic spintronic devices due to its highly spin-polarized character and air stability. Whereas organic semiconductors and polymers have been mainly envisaged to propagate spin information, self-assembled monolayers (SAMs) have been overlooked and should be considered as promising materials for molecular engineering of spintronic devices. Surprisingly, up to now the first key step of SAM grafting protocols over LSMO surface thin films is still missing. We report the grafting of dodecyl (C12P) and octadecyl (C18P) phosphonic acids over the LSMO half-metallic oxide. Alkylphosphonic acids form ordered self-a…

research product

Spinterface: Crafting spintronics at the molecular scale

A number of studies have suggested that molecular materials could offer similar performance as, or even potentially supersede, those of inorganic materials in spintronics devices. Radically new spintronics functionalities, unavailable with conventional inorganic materials, could stem from the interface between ferromagnetic (FM) and molecular materials, giving rise to the so-called “spinterface” field. In this article, we review the fundamental concepts, recent experiments, and perspectives in this fast rising field, where the functionality is brought from the bulk to the ultimate downscaled device: the interface. The article shows how spin-dependent hybridization at the FM metal/molecule i…

research product

Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers

We report on spin transport in state-of-the-art epitaxial monolayer graphene based 2D-magnetic tunnel junctions (2D-MTJs). In our measurements, supported by ab-initio calculations, the strength of interaction between ferromagnetic electrodes and graphene monolayers is shown to fundamentally control the resulting spin signal. In particular, by switching the graphene/ferromagnet interaction, spin transport reveals magneto-resistance signal MR > 80% in junctions with low resistance × area products. Descriptions based only on a simple K-point filtering picture (i.e. MR increase with the number of layers) are not sufficient to predict the behavior of our devices. We emphasize that hybridization …

research product

Very Long Term Stabilization of a 2D Magnet down to the Monolayer for Device Integration

2D materials have recently demonstrated a strong potential for spintronic applications. This has been further reinforced by the discovery of ferromagnetic 2D layers. Nevertheless, the fragility of ...

research product

Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport.

Chemically functionalized surfaces are studied for a wide range of applications going from medicine to electronics. Whereas non-magnetic surfaces have been widely studied, functionalization of magnetic surfaces is much less common and has almost never been used for spintronics applications. In this article we present the functionalization of La2/3Sr1/3MnO3, a ferromagnetic oxide, with self-assembled monolayers for spintronics. La2/3Sr1/3MnO3 is the prototypical half-metallic manganite used in spintronics studies. First, we show that La2/3Sr1/3MnO3 can be functionalized by alkylphosphonic acid molecules. We then emphasize the use of these functionalized surfaces in spintronics devices such a…

research product