0000000001300657

AUTHOR

Juan Casado

On the biradicaloid nature of long quinoidal oligothiophenes: experimental evidence guided by theoretical studies.

research product

UV–Vis, IR, Raman and theoretical characterization of a novel quinoid oligothiophene molecular material

A quinoid-type oligothiophene, 3 0 ,4 0 -dibutyl-5,5 00 -bis(dicyanomethylene)-5,5 00 -dihidro-2,2 0 :5 0 ,2 00 -terthiophene, which can be viewed as an analog of TCNQ, has been investigated by spectroelectrochemistry and density functional theory calculations, in its neutral and dianionic states. Electrochemical data show that the molecule can be both reduced and oxidized at relatively low potentials. Upon reduction, both experiments and theory agree well with the generation of a dianionic charged species. The model shows that the electronic structure of the dianion is consistent with two anionic dicyanomethylene groups attached to a central terthienyl spine having an aromatic structure. T…

research product

Breaking Bonds and Forming Nanographene Diradicals with Pressure.

New anthanthrone-based polycyclic scaffolds possessing peripheral crowed quinodimethanes have been prepared. While the compounds adopt a closed-shell butterfly shaped structure in the ground state, a concave-to-convex fluxional dynamic inversion is accessible with a low energy barrier through an open-shell diradicaloid transition-state. Mainly driven by the release of strainattributed to the steric hindrance at the peri position of the anthanthrone core, a low-lying open-shell diradical is accessible through planarization of the core, which can be achieved by thermal excitation in solution. Alternatively, planarization can be achieved by application of mild pressure in the solid state, in w…

research product

Release of Hypoacetylated and Trimethylated Histone H4 Is an Epigenetic Marker of Early Apoptosis

11 p.-5 fig.-1 fig. supl.

research product

Strain Switching in van der Waals Heterostructures triggered by a Spin-Crossover Metal Organic Framework

Van der Waals heterostructures (vdWHs) combine different layered materials with properties of interest,1 such as two-dimensional (2D) semimetals, semiconductors, magnets or superconductors. These heterostructures provide the possibility of engineering new materials with emergent functionalities that are not accessible in another way. Beyond inorganic 2D materials, layered molecular materials remain still rather unexplored, with only few examples regarding their isolation as atomically thin-layers. By a proper chemical design, the physical properties of these systems can be tuned, as illustrated by the so-called spin-crossover (SCO) compounds, in which a spin transition can be induced by app…

research product

Molecule Isomerism Modulates the Diradical Properties of Stable Singlet Diradicaloids

Inclusion of quinoidal cores in conjugated hydrocarbons is a common strategy to modulate the properties of diradicaloids formed by aromaticity recovery within the quinoidal unit. Here we describe an alternative approach of tuning of diradical properties in indenoindenodibenzothiophenes upon anti → syn isomerism of the benzothiophene motif. This alters the relationship of the S atom with the radical center from linear to cross conjugation yet retains the same 2,6-naphtho conjugation pattern of the rearomatized core. We conduct a full comparison between the anti and syn derivatives based on structural, spectroscopic, theoretical, and magnetic measurements, showing that these systems are stabl…

research product

Reversible Dimerization and Polymerization of a Janus Diradical To Produce Labile C−C Bonds and Large Chromic Effects

Conducting polymers can be synthesized by irreversible diradical monomer polymerization. A reversible version of this reaction consisting of the formation/dissociation of σ‐dimers and σ‐polymers from a stable quinonoidal diradical precursor is described. The reaction reversibility is made by a quinonoidal molecule which changes its structure to an aromatic species by forming weak and long intermolecular C−C single bonds. The reaction provokes a giant chromic effect of about 2.5 eV. The two opposite but complementary quinonoidal and aromatic tautomers provide the Janus faces of the reactants and products which produces the observed chromic effect. A reaction mechanism is proposed to explain …

research product

Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework

"Breathing" metal-organic frameworks (MOFs) that involve changes in their structural and physical properties upon an external stimulus are an interesting class of crystalline materials due to their range of potential applications including chemical sensors. The addition of redox activity opens up a new pathway for multifunctional "breathing" frameworks. Herein, we report the continuous breathing behavior of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, showing a reversible swelling (up to ca. 40% of the volume cell) upon solvent adsorption. Importantly, the planarity of the TTF linkers is influenced by the breathing behavior of the MOF, directly impacting on its electrochemical proper…

research product

Spectroscopic and theoretical study of the molecular and electronic structures of a terthiophene-based quinodimethane.

The UV/Vis, infrared absorption, and Raman scattering spectra of 3',4'-dibutyl-5,5"-bis(dicyanomethylene)-5,5"-dihydro-2,2':5',2"-terthiophene have been analyzed with the aid of density functional theory calculations. The compound exhibits a quinoid structure in its ground electronic state and presents an intramolecular charge transfer from the terthiophene moiety to the C(CN)2 groups. The molecular system therefore consists of an electron-deficient terthiophene backbone end-capped with electron-rich C(CN)2 groups. The molecule is characterized by a strong absorption in the red, due to the HOMO-->LUMO pi-pi* electronic transition of the terthiophene backbone that shifts hypsochromically on …

research product

Theoretical description of the Raman spectrum of a vinylene-bridged quaterthiophene oligomer

The Raman spectrum of a quaterthiophene oligomer incorporating a central vinylene spacer has been investigated using density functional theory B3LYP/6-31G** calculations. The spectrum has been fully assigned with the aid of the calculations and in comparison with unsubstituted quaterthiophene. The spectrum preserves most of the vibrational features of linear oligothiophenes. The vibrations of the vinylene spacer are clearly differentiated from those of the rest of the chain. The vinylene spacer increases the conjugation length of the molecule and induces a frequency downshift of < 20 cm 21 for the normal modes associated with the nas(CyC) and ns(CyC) vibrations of the thiophene rings. The m…

research product

Corrigendum: An Unusually Small Singlet-Triplet Gap in a Quinoidal 1,6-Methano[10]annulene Resulting from Baird's 4n π-Electron Triplet Stabilization.

Within the continuum of π-extended quinoidal electronic structures exist molecules that by design can support open-shell diradical structures. The prevailing molecular design criteria for such structures involve proaromatic nature that evolves aromaticity in open-shell diradical resonance structures. A new diradical species built upon a quinoidal methano[10]annulene unit is synthesized and spectroscopically evaluated. The requisite intersystem crossing in the open-shell structure is accompanied by structural reorganization from a contorted Mobius aromatic-like shape in S0 to a more planar shape in the Huckel aromatic-like T1. This stability was attributed to Baird’s Rule which dictates the …

research product

Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals

The consequence of unpaired electrons in organic molecules has fascinated and confounded chemists for over a century. The study of open-shell molecules has been rekindled in recent years as new synthetic methods, improved spectroscopic techniques and powerful computational tools have been brought to bear on this field. Nonetheless, it is the intrinsic instability of the biradical species that limits the practicality of this research. Here we report the synthesis and characterization of a molecule based on the diindeno[b,i]anthracene framework that exhibits pronounced open-shell character yet possesses remarkable stability. The synthetic route is rapid, efficient and possible on the gram sca…

research product

Innentitelbild: An Unusually Small Singlet-Triplet Gap in a Quinoidal 1,6-Methano[10]annulene Resulting from Baird’s 4nπ-Electron Triplet Stabilization (Angew. Chem. 20/2015)

research product

On the handedness of helical aggregates of C3 tricarboxamides: a multichiroptical characterization

A complete chiroptical characterization of the supramolecular polymers formed by tricarboxamides (S)-1 and (R)-1 is performed using ECD, VCD and CPL dichroic techniques. The helical aggregates show an intense CPL signal and their absolute P- or M-configuration is assigned with the help of theoretical calculations.

research product

Impact of the synergistic collaboration of oligothiophene bridges and ruthenium complexes on the optical properties of dumbbell-shaped compounds.

The linear and non-linear optical properties of a family of dumbbell-shaped dinuclear complexes, in which an oligothiophene chain with various numbers of rings (1, 3, and 6) acts as a bridge between two homoleptic tris(2,2'-bipyridine)ruthenium(II) complexes, have been fully investigated by using a range of spectroscopic techniques (absorption and luminescence, transient absorption, Raman, and non-linear absorption), together with density functional theory calculations. Our results shed light on the impact of the synergistic collaboration between the electronic structures of the two chemical moieties on the optical properties of these materials. Experiments on the linear optical properties …

research product

Magnetic Properties of Quinoidal Oligothiophenes: More Than Good Candidates for Ambipolar Organic Semiconductors?

A series of quinoidal oligothiophenes have been investigated by means of solid-state Fourier-transform (FT)-Raman and electron spin resonance (ESR) spectroscopies complemented with density functional theory calculations. FT-Raman spectra recorded as a function of temperature show that, upon laser irradiation, the molecules undergo a reversible structural evolution from a quinoid-type pattern at low temperature to an aromatic-type pattern at high temperature. Moreover, ESR spectra show that a portion of these compounds exists in a biradical state at room temperature. These seemingly disconnected findings and others, such as conformational isomerism, are consistently explained by the consider…

research product

Monoradicals and Diradicals of Dibenzofluoreno[3,2-b]fluorene Isomers: Mechanisms of Electronic Delocalization

The preparation of a series of dibenzo- and tetrabenzo-fused fluoreno[3,2-b]fluorenes is disclosed, and the diradicaloid properties of these molecules are compared with those of a similar, previously reported series of anthracene-based diradicaloids. Insights on the diradical mode of delocalization tuning by constitutional isomerism of the external naphthalenes has been explored by means of the physical approach (dissection of the electronic properties in terms of electronic repulsion and transfer integral) of diradicals. This study has also been extended to the redox species of the two series of compounds and found that the radical cations have the same stabilization mode by delocalization…

research product

Diferrocenyl oligothiophene wires: Raman and quantum chemical study of valence-trapped cations

A combination of Raman spectroscopy and density functional theory calculations is used to describe the structural and spectroscopic properties of the different isomeric cations of diferrocenyl quaterthiophenes. Isomerisation of the thienyl β-positions provides site selective oxidation, which gives rise to species that can interconvert by moving the charge over the bridge. The spectroscopic study allows us to describe a sequence of stationary trapped cationic, either ferrocenyl or thienyl, states which constitutes an energy cascade of accessible sites through which the charge transfer can proceed.

research product

Diindenoanthracene Diradicaloids Enable Rational, Incremental Tuning of Their Singlet-Triplet Energy Gaps

Summary A fundamental understanding of the inherent electronic and magnetic properties of open-shell diradicaloids is essential so that these properties can be modified to create molecules that meet the potential needs of industry. However, there have been very few attempts to date to systematically accomplish this in diradicaloid compounds. Here, we present the synthetic, spectroscopic, and computational investigation of a series of molecules based on the diindeno[1,2-b:1′,2′-g]anthracene framework. Calculations suggest that by altering the transfer integral term, tab, we are able to manipulate the diradical character and, thus, ΔEST within this series of molecules. Experimentally determin…

research product

High Yield Ultrafast Intramolecular Singlet Exciton Fission in a Quinoidal Bithiophene

We report the process of singlet exciton fission with high-yield upon photoexcitation of a quinoidal thiophene molecule. Efficient ultrafast triplet photogeneration and its yield are determined by photoinduced triplet-triplet absorption, flash photolysis triplet lifetime measurements, as well as by femtosecond time-resolved transient absorption and fluorescence methods. These experiments show that optically excited quinoidal bithiophene molecule undergoes ultrafast formation of the triplet-like state with the lifetime ∼57 μs. CASPT2 and RAS-SF calculations have been performed to support the experimental findings. To date, high singlet fission rates have been reported for crystalline and pol…

research product

Quinoidal oligothiophenes: towards biradical ground-state species.

A family of quinoidal oligothiophenes, from the dimer to the hexamer, with fused bis(butoxymethyl)cyclopentane groups has been extensively investigated by means of electronic and vibrational spectroscopy, electrochemical measurements, and density functional calculations. The latter predict that the electronic ground state always corresponds to a singlet state and that, for the longest oligomers, this state has biradical character that increases with increasing oligomer length. The shortest oligomers display closed-shell quinoidal structures. Calculations also predict the existence of very low energy excited triplet states that can be populated at room temperature. Aromatization of the conju…

research product

Carbonyl-functionalized quaterthiophenes: a study of the vibrational Raman and electronic absorption/emission properties guided by theoretical calculations.

This work investigates the evolution of the molecular, vibrational, and optical properties within a family of carbonyl-functionalized quaterthiophenes: 5,5'''-diheptanoyl-2,2':5',2'':5'',2'''-quaterthiophene (1), 5,5'''-diperfluorohexylcarbonyl-2,2':5',2'':5'',2'''-quaterthiophene (2), and 2,7-[bis(5-perfluorohexylcarbonylthien-2-yl)]-4H-cyclopenta[2,1-b:3,4-b']-dithiophene-4-one (3). The analysis is performed by Raman and UV/Vis absorption/excitation/fluorescence spectroscopy in combination with density functional calculations. Theoretical calculations show that substitution with carbonyl groups and perfluorohexyl chains induces progressive quinoidization of the π-conjugated backbone in co…

research product

Torsional Bias as a Strategy To Tune Singlet–Triplet Gaps in Organic Diradicals

Quinoidal compounds with proaromatic structures possess differing degrees of diradical character, where the open-shell diradical resonance form has restored aromaticity throughout the compound. Methods to tune the diradical character of these compounds have traditionally focused on altering the length and the molecular composition of the π-conjugated backbones. However, other molecular design strategies to tune the singlet–triplet gap of π-conjugated quinoidal molecules have not been extensively explored. We previously reported a strikingly small energy gap between the quinoidal and diradical states of a quinoidal small molecule containing methano[10]annulene (TMTQ) that was dictated in lar…

research product

Fluoreno[2,1-a]fluorene: an ortho-naphthoquinodimethane-based system with partial diradical character.

Fluoreno[2,1-a]fluorene, a molecule comprising fused ortho-quinodimethane units in a 1,5-napthoquinodimethane core, has been prepared and investigated with spectroscopy (UV-Vis-NIR, 1H-NMR and Raman), SQUID magnetometry, spectroelectrochemistry and quantum chemistry. While para-quinodimethanes with a 2,6-substitution pattern exist as closed-shell species and meta-quinodimethanes with 2,7-substitution favour a ground electronic state with very large diradical character, our 1,5-substituted ortho-naphthoquinodimethane-based system exhibits an intermediate degree of diradical character.

research product

Inside Cover: An Unusually Small Singlet-Triplet Gap in a Quinoidal 1,6-Methano[10]annulene Resulting from Baird’s 4nπ-Electron Triplet Stabilization (Angew. Chem. Int. Ed. 20/2015)

research product

CCDC 2016988: Experimental Crystal Structure Determination

Related Article: Hideki Hayashi, Joshua E. Barker, Abel Cárdenas Valdivia, Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gómez-García, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano, Shin-ichiro Kato, Michael M. Haley, Juan Casado|2020|J.Am.Chem.Soc.|142|20444|doi:10.1021/jacs.0c09588

research product

CCDC 2023797: Experimental Crystal Structure Determination

Related Article: Hideki Hayashi, Joshua E. Barker, Abel Cárdenas Valdivia, Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gómez-García, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano, Shin-ichiro Kato, Michael M. Haley, Juan Casado|2020|J.Am.Chem.Soc.|142|20444|doi:10.1021/jacs.0c09588

research product

CCDC 1949614: Experimental Crystal Structure Determination

Related Article: Justin J. Dressler, Abel Cárdenas Valdivia, Ryohei Kishi, Gabriel E. Rudebusch, Austin M. Ventura, Brian E. Chastain, Carlos J. Gómez-García, Lev N. Zakharov, Masayoshi Nakano, Juan Casado, Michael M. Haley|2020|Cell Press: Chem|6|1353|doi:10.1016/j.chempr.2020.02.010

research product

CCDC 1949404: Experimental Crystal Structure Determination

Related Article: Joshua E. Barker, Justin J. Dressler, Abel Cárdenas Valdivia, Ryohei Kishi, Eric T. Strand, Lev N. Zakharov, Samantha N. MacMillan, Carlos J. Gómez-García, Masayoshi Nakano, Juan Casado, Michael M. Haley|2019|J.Am.Chem.Soc.|142|1548|doi:10.1021/jacs.9b11898

research product

CCDC 1949613: Experimental Crystal Structure Determination

Related Article: Justin J. Dressler, Abel Cárdenas Valdivia, Ryohei Kishi, Gabriel E. Rudebusch, Austin M. Ventura, Brian E. Chastain, Carlos J. Gómez-García, Lev N. Zakharov, Masayoshi Nakano, Juan Casado, Michael M. Haley|2020|Cell Press: Chem|6|1353|doi:10.1016/j.chempr.2020.02.010

research product

CCDC 2016990: Experimental Crystal Structure Determination

Related Article: Hideki Hayashi, Joshua E. Barker, Abel Cárdenas Valdivia, Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gómez-García, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano, Shin-ichiro Kato, Michael M. Haley, Juan Casado|2020|J.Am.Chem.Soc.|142|20444|doi:10.1021/jacs.0c09588

research product

CCDC 2016987: Experimental Crystal Structure Determination

Related Article: Hideki Hayashi, Joshua E. Barker, Abel Cárdenas Valdivia, Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gómez-García, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano, Shin-ichiro Kato, Michael M. Haley, Juan Casado|2020|J.Am.Chem.Soc.|142|20444|doi:10.1021/jacs.0c09588

research product

CCDC 2016986: Experimental Crystal Structure Determination

Related Article: Hideki Hayashi, Joshua E. Barker, Abel Cárdenas Valdivia, Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gómez-García, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano, Shin-ichiro Kato, Michael M. Haley, Juan Casado|2020|J.Am.Chem.Soc.|142|20444|doi:10.1021/jacs.0c09588

research product

CCDC 1949611: Experimental Crystal Structure Determination

Related Article: Justin J. Dressler, Abel Cárdenas Valdivia, Ryohei Kishi, Gabriel E. Rudebusch, Austin M. Ventura, Brian E. Chastain, Carlos J. Gómez-García, Lev N. Zakharov, Masayoshi Nakano, Juan Casado, Michael M. Haley|2020|Cell Press: Chem|6|1353|doi:10.1016/j.chempr.2020.02.010

research product

CCDC 2016989: Experimental Crystal Structure Determination

Related Article: Hideki Hayashi, Joshua E. Barker, Abel Cárdenas Valdivia, Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gómez-García, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano, Shin-ichiro Kato, Michael M. Haley, Juan Casado|2020|J.Am.Chem.Soc.|142|20444|doi:10.1021/jacs.0c09588

research product

CCDC 1949612: Experimental Crystal Structure Determination

Related Article: Justin J. Dressler, Abel Cárdenas Valdivia, Ryohei Kishi, Gabriel E. Rudebusch, Austin M. Ventura, Brian E. Chastain, Carlos J. Gómez-García, Lev N. Zakharov, Masayoshi Nakano, Juan Casado, Michael M. Haley|2020|Cell Press: Chem|6|1353|doi:10.1016/j.chempr.2020.02.010

research product

CCDC 1589136: Experimental Crystal Structure Determination

Related Article: Joshua E. Barker, Justin J. Dressler, Abel Cárdenas Valdivia, Ryohei Kishi, Eric T. Strand, Lev N. Zakharov, Samantha N. MacMillan, Carlos J. Gómez-García, Masayoshi Nakano, Juan Casado, Michael M. Haley|2019|J.Am.Chem.Soc.|142|1548|doi:10.1021/jacs.9b11898

research product

CCDC 1542456: Experimental Crystal Structure Determination

Related Article: Maude Desroches, Paula Mayorga Burrezo, Joël Boismenu-Lavoie, Miriam Peña Álvarez, Carlos J. Gómez-García, Jon M. Matxain, David Casanova, Jean-François Morin, Juan Casado|2017|Angew.Chem.,Int.Ed.|56|16212|doi:10.1002/anie.201708740

research product

CCDC 2016622: Experimental Crystal Structure Determination

Related Article: Hideki Hayashi, Joshua E. Barker, Abel Cárdenas Valdivia, Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gómez-García, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano, Shin-ichiro Kato, Michael M. Haley, Juan Casado|2020|J.Am.Chem.Soc.|142|20444|doi:10.1021/jacs.0c09588

research product

CCDC 1964314: Experimental Crystal Structure Determination

Related Article: Justin J. Dressler, Abel Cárdenas Valdivia, Ryohei Kishi, Gabriel E. Rudebusch, Austin M. Ventura, Brian E. Chastain, Carlos J. Gómez-García, Lev N. Zakharov, Masayoshi Nakano, Juan Casado, Michael M. Haley|2020|Cell Press: Chem|6|1353|doi:10.1016/j.chempr.2020.02.010

research product

CCDC 1426708: Experimental Crystal Structure Determination

Related Article: Gabriel E. Rudebusch, José L. Zafra, Kjell Jorner, Kotaro Fukuda, Jonathan L. Marshall, Iratxe Arrechea-Marcos, Guzmán L. Espejo, Rocío Ponce Ortiz, Carlos J. Gómez-García, Lev N. Zakharov, Masayoshi Nakano, Henrik Ottosson, Juan Casado, Michael M. Haley|2016|Nature Chemistry|8|753|doi:10.1038/nchem.2518

research product