0000000001300695
AUTHOR
Dirk M. Guldi
Unveiling the nature of supramolecular crown ether–C60 interactions
A series of exTTF-(crown ether)2 receptors, designed to host C60, has been prepared. The size of the crown ether and the nature of the heteroatoms have been systematically changed to fine tune the association constants, which were determined by a number of complementary spectroscopic techniques. Electrochemical measurements and transient absorption spectroscopy assisted in corroborating charge transfer in the ground state and in the excited state, leading to the formation of radical ion pairs featuring lifetimes in the range from 12 to 21 ps. To rationalize the nature of the exTTF-(crown ether)2$C60 stabilizing interactions, theoretical calculations have been carried out, suggesting a syner…
Anticancer Effect of an Electronically Coupled Oligoferrocene
The mode of anticancer activity of simple ferrocenes often relies on their intracellular oxidation with the formation of cytotoxic ferrocenium species. The former compounds should be considered as ...
Diastereoselective formation of homochiral flexible perylene bisimide cyclophanes and their hybrids with fullerenes†‡
Cyclophanes of different ring sizes featuring perylene-3,4:9,10-tetracarboxylic acid bisimide (PBI) linked by flexible malonates were designed, synthesized, and investigated with respect to their structural, chemical and photo-physical properties. It is predominantly the number of PBIs and their geometric arrangement, which influence dramatically their properties. For example, two-PBI containing cyclophanes reveal physico-chemical characteristics that are governed by strong co-facial π–π interactions. This is in stark contrast to cyclophanes with either three or four PBIs. Key to co-facial π–π stackings are the flexible malonate linkers, which, in turn, set up the ways and means for diaster…
Mono- and Tripodal Porphyrins: Investigation on the Influence of the Number of Pyrene Anchors in Carbon Nanotube and Graphene Hybrids.
A series of molecular precursors, containing one (1 and 3) or three (2 and 4) pyrene anchors, covalently linked to porphyrins (free base or Zn), were prepared and characterized. All of them enable ...
Titelbild: Electron Transfer in a Supramolecular Associate of a Fullerene Fragment (Angew. Chem. 8/2014)
Bowl-shape electron donors with absorptions in the visible range of the solar spectrum and their supramolecular assemblies with C 60
We describe the synthesis, electronic, optical and photophysical properties of a family of three electron-donor bowl-shaped organic molecules that absorb light in the whole range of the visible spectrum (up to 800 nm in one case), and associate C60 in solution with binding constants in the range of 104–102 M−1 as measured from both UV-vis and fluorescence titrations in several solvents. These molecules are π-extended derivatives of tetrathiafulvalene, based on a truxene core to which two or three units of dithiole are covalently attached. The inclusion of the bulky dithiole groups is responsible for their bowl-shape geometry, which allows them to associate with C60, and their electron-donor…
Cover Picture: Electron Transfer in a Supramolecular Associate of a Fullerene Fragment (Angew. Chem. Int. Ed. 8/2014)
Mimicking photosynthesis: covalent [60]fullerene-based donor–acceptor ensembles
Abstract Within the context of exploring photophysical properties of [60]fullerene-based donor–acceptor ensembles, we highlight in this contribution an approach towards the synthesis of a novel series of donor-bridge-acceptor, C 60 –wire– ex TTF , ensembles that incorporate p -phenylenevinylene oligomers, in which the conjugation length has been systematically increased, as bridges that connect π-extended tetrathiafulvalenes (exTTF) (electron donor) with [60]fullerene (electron acceptor). This molecular design allows probing the effects of distance and rate, at which electron transfer processes occur, as well as the molecular-wire behavior of the oligo-PPV fragments.
Highly Conjugatedp-Quinonoidπ-Extended Tetrathiafulvalene Derivatives: A Class of Highly Distorted Electron Donors
A new class of pi-extended TTF-type electron donors (11 a-c) has been synthesized by Wittig-Horner olefination of bianthrone (9) with 1,3-dithiole phosphonate esters (10 a-c). In cyclic voltammetry experiments, donors 11 a-c reveal a single, electrochemically irreversible oxidation-yielding the corresponding dicationic products-at relatively low oxidation potentials (approximately 0.7-0.8 V). Theoretical calculations, performed at the DFT level (B3 P86/6-31 G*), predict a highly-folded C(2h) structure for 11 a. In the ground state, the molecule adopts a double saddle-like conformation to compensate the steric hindrance. The calculations suggest that the intramolecular charge transfer associ…
Charge transfer interactions in self-assembled single walled carbon nanotubes/Dawson–Wells polyoxometalate hybrids
We demonstrate the success in self-assembling pyrene-modified Dawson–Wells-type polyoxometalates (POMs) with single walled carbon nanotubes (SWCNTs) by means of π–π interactions. In this context, the immobilization of POMs onto SWCNTs is corroborated by aberration-corrected high-resolution electron microscopy, thermogravimetric analysis, and Raman spectroscopy. From steady-state and time-resolved photophysical techniques we derived evidence for mutual interactions between SWCNTs and POMs in the excited states. The latter are the inception to a charge transfer from the SWCNTs to the POMs. Our results corroborate the suitability of POM–SWCNTs assemblies for photoactive molecular devices.
Complexation and Electronic Communication between Corannulene-Based Buckybowls and a Curved Truxene-TTF Donor
Abstract: The association behavior of an electron-donating, bowl-shaped, truxene-based tetrathiafulvalene (truxTTF) with two corannulene-based fullerene fragments, C32H12 and C38H14, is investigated in several solvents. Formation of 1:1 complexes is followed by absorption titrations and complemented by density functional theory (DFT) calculations. The binding constants are in the range logKa=2.9–3.5. DFT calculations reveal that the most stable arrangement is the conformation in which the 1,3-dithiole ring of truxTTF is placed inside the concave cavity of the corannulene derivative. This arrangement is confirmed experimentally by NMR measurements, and implies that a combination of p–p and C…
A Fully Conjugated TTF-π-TCAQ System: Synthesis, Structure, and Electronic Properties
The synthesis of the first fully conjugated tetrathiafulvalene-tetracyano-p-quinodimethane ((TTF)-TCNQ)-type system has been carried out by means of a Julia-Kocienski olefination reaction. In particular, a tetracyanoanthraquinodimethane (TCAQ) formyl derivative and two new sulfonylmethyl-exTTFs (exTTF = 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole)--prepared as new building blocks--were linked. A variety of experimental conditions reveal that the use of sodium hexamethyldisilazane (NaHMDS) as base in THF afforded the E olefins with excellent stereoselectivity. Theoretical calculations at the B3LYP/6-31G** level point to highly distorted exTTF and TCAQ that form an almo…
Diskrete supramolekulare Donor-Akzeptor-Komplexe
Topological effects of a rigid chiral spacer on the electronic interactions in donor-acceptor ensembles
Two triads (donor-spacer-acceptor), etTTF-BN-C 6 0 (6) and ZnP-BN-C 6 0 (7), in which electron donors (i.e., exTTF or ZnP) are covalently linked to C 6 0 through a chiral binaphthyl bridge (BN), have been prepared in a multistep synthetic procedure starting from a highly soluble enantiomerically pure binaphthyl building block (1). Unlike other oligomeric bridges, with hinaphthyl bridges, the conjugation between the donor and the acceptor units is broken and geometric conformational changes are facilitated. Consequently, distances and electronic interactions between the donor and C 6 0 are drastically changed. Both donor-spacer-acceptor (D-s-A) systems (i.e., 6 and 7) exhibit redox processes…
Design, synthesis and photovoltaic properties of [60]fullerene based molecular materials
Abstract The possibility to use new organic semiconductor materials, in place of silicon wafers, in the fabrication of photovoltaic devices on substrates offer the prospect of lower manufacturing costs, particularly for large area applications. Thus, one of the most promising areas in fullerene research involves its potential application, mixed with conjugated polymers, in mimicking photosynthesis and in the related solar energy conversion. The tendency to phase segregation in blends of C60 derivatives and conjugated polymers has to be optimized to improve both charge photogeneration and transport in photovoltaic devices. In order to optimize device performances, a great deal of work has be…
Electron transfer in a supramolecular associate of a fullerene fragment
Herein, we investigate the association of a fullerene fragment, hemifullerene C30H12, with an electron-donating bowl-shaped tetrathiafulvalene derivative (truxTTF). UV/Vis titrations and DFT calculations support formation of the supramolecular complex, for which an association constant of log Ka = 3.6±0.3 in CHCl3 at room temperature is calculated. Remarkably, electron transfer from truxTTF to C30H12 to form the fully charge-separated species takes place upon irradiation of the associate with light, constituting the first example in which a fullerene fragment mimics the electron-accepting behavior of fullerenes within a supramolecular complex.
Discrete supramolecular donor-acceptor complexes
The renewed interest in noncovalently associating electroactive molecules arises in part from the quest for new organic materials that convert solar energy into electrical/ chemical equivalents. In this context, the formation of charge-separated states is a key prerequisite. Charge-transfer events triggered by light have been studied in supramolecular donor–acceptor systems based on hydrogen bonds and coordinative metal bonds. Although many of the most widely utilized electroactive fragments feature large pconjugated surfaces, to date the use of p–p aromatic interactions has mainly been limited to the construction of semi-infinite ensembles of chromophores either to achieve charge transport…
CCDC 1993737: Experimental Crystal Structure Determination
Related Article: Gina Zeh, Philipp Haines, Matthias E. Miehlich, Torben Kienz, Andreas Neidlinger, Ralf P. Friedrich, Hülya G. Özkan, Christoph Alexiou, Frank Hampel, Dirk M. Guldi, Karsten Meyer, Jürgen Schatz, Katja Heinze, Andriy Mokhir|2020|Organometallics|39|3112|doi:10.1021/acs.organomet.0c00306
CCDC 1993738: Experimental Crystal Structure Determination
Related Article: Gina Zeh, Philipp Haines, Matthias E. Miehlich, Torben Kienz, Andreas Neidlinger, Ralf P. Friedrich, Hülya G. Özkan, Christoph Alexiou, Frank Hampel, Dirk M. Guldi, Karsten Meyer, Jürgen Schatz, Katja Heinze, Andriy Mokhir|2020|Organometallics|39|3112|doi:10.1021/acs.organomet.0c00306