0000000001301482
AUTHOR
Borys Ośmiałowski
"Comment on ""Non-symmetric substituted ureas locked in an (E,Z) conformation: an unusual anion binding via supramolecular assembly"" by M. Olivari, C. Caltagirone, A. Garau, F. Isaia, M. E. Light, V. Lippolis, R. Montis and M. A. Scorciapino, New J. Chem., 2013, 37, 663"
We propose another point of view on the type of hydrogen bonded complexes that were described in this journal (M. Olivari et al., New J. Chem., 2013, 37, 663). The main difference is the molecular geometry and breakage of the intramolecular hydrogen bond during association. The current comment is to highlight mentioned aspects and to point out that in some cases the interpretation may not be straightforward due to the simultaneous effects associated with complexation.
Substituent and temperature controlled tautomerism: Multinuclear magnetic resonance, X-ray, and theoretical studies on 2-phenacylquinolines
Proton-transfer equilibria in chloroform solution of twelve 2-phenacylquinolines were studied by 1H, 13C and 15N NMR spectroscopies. The (Z)-enaminone form stabilized by an intramolecular hydrogen bond was found to prevail in all cases. Electron-donating substituents in the phenacyl part of the molecule lead to an increase of the ketimine form (to 33% for p-NMe2). Variable temperature 1H NMR measurements show that higher temperatures have the same effect. The negative logarithm values of the equilibrium constant, pKT, were found to be linearly dependent on Hammett σ substituent constants. The pKTvs. temperature correlation also has a linear character. In general, strong electron-withdrawing…
NMR crystallography of 2-Acylamino-6-[1H]pyridones: solid state NMR, GIPAW computational, and single crystal X-ray diffraction studies
Abstract 2-Acylamino-6-[1H]-pyridones [acyl = RCO, where R = methyl (1), ethyl (2), iso-propyl (3), tert-butyl (4), and 1-adamantyl (5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a “bridge” between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreem…
Tuning the Electronic Properties of the Dative N-B Bond with Associated O-B Interaction: Electron Localizability Indicator from X-Ray Wavefunction Refinement.
Despite the immense growth in interest in difluoroborate dyes, the nature of the interactions of the boron atom within the N-BF2 -O kernel is not yet fully understood. Herein, a set of real-space bonding indicators is used to quantify the electronic characteristics of the dative N-B bond in difluoroborate derivatives. The atoms-in-molecules (AIM) partitioning scheme is complemented by the electron localizability indicator (ELI-D) approach, and both were applied to experimental and theoretical electron-density distributions (X-ray constrained wavefunction fitting vs. DFT calculations). Additionally, Fermi orbital analysis was introduced for small DFT models to support and extend the findings…
Effect of conjugated system extension on structural features and electron-density distribution in charge–transfer difluoroborates
A comparative structural study of two related donor–acceptor pyridine-based BF2 complexes, namely, 3-(dimethylamino)-1,1-difluoro-1H-pyrido[1,2-c][1,3,5,2]oxadiazaborinin-9-ium-1-uide, C8H10BF2N3O (1), and 3-{(1E,3E)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl}-1,1-difluoro-1H-pyrido[1,2-c][1,3,5,2]oxadiazaborinin-9-ium-1-uide, C18H18BF2N3O (2), containing a dimethylamino group and either the shortest (in 1) or the longest (in 2) charge-transfer path known until now in this family of compounds, is presented. Single-crystal X-ray diffraction analysis supported by computational investigations shed more light on these systems, indicating, among other aspects, the predominance of C—H...F cont…
Two (E)-2-({[4-(dialkylamino)phenyl]imino}methyl)-4-nitrophenols.
The slow evaporation of analytical NMR samples resulted in the formation of crystals of (E)-2-({[4-(dimethylamino)phenyl]imino}methyl)-4-nitrophenol, C15H15N3O3, (I), and (E)-2-({[4-(diethylamino)phenyl]imino}methyl)-4-nitrophenol, C17H19N3O3, (II). Despite the small structural difference between these twoN-salicylideneaniline derivatives, they show different space groups and diverse molecular packing. The molecules of both compounds are close to being planar due to an intramolecular O—H...N hydrogen bond. The 4-alkylamino-substituted benzene ring is inclined at an angle of 13.44 (19)° in (I) and 2.57 (8)° in (II) with respect to the 4-nitro-substituted phenol ring. Only very weak intermole…
NMR spectral and X-ray structural investigation of 1,3-bis(2-quinolyl)-2-(p-chlorophenyl)-2-propanol
Abstract 1,3-Bis(2-quinolyl)-2-(p-chlorophenyl)-2-propanol (BQCP) has been prepared and characterised by 1H, 13C, 15N NMR spectral and X-ray structural parameters. The methylene protons of BQCP are diastereotopic in solution (CDCl3) as revealed by 1H NMR. In crystalline state there exists an intramolecular hydrogen bond O–H⋯N with one of two nitrogen atoms in BQCP. Variable temperature 1H NMR and PFG 1H, 15N HMBC runs show that in solution BQCP shows C2v-symmetry (both CH2-2-quinolyl fragments are equivalent) in NMR-time scale due to a fast exchange of the hydrogen bond from one nitrogen to the other even at 223 K.
2-[4-(Dimethylamino)phenyl]-3,3-difluoro-3H-naphtho[1,2-e][1,3,2]oxazaborinin-2-ium-3-uide
In the title compound, C19H17BF2N2O, a twist about the N—C single bond is observed, making the cross conjugation not as efficient as in the case of a planar structure. The borone complex has tetrahedral geometry. In the crystal, molecules are conected by weak C—H...F hydrogen bonds.
2-Acylamino-6-pyridones: breaking of an intramolecular hydrogen bond by self-association and complexation with double and triple hydrogenbonding counterparts. Uncommon steric effect on intermolecular interactions
2-Acylamino-6-pyridones (acyl = RCO, where R = Me, Et, i-Pr, t-Bu, and 1-adamantyl) were previously characterized by X-ray diffractometry and solid-state NMR techniques by us. One of these compounds was used recently in organocatalysis. The series is now studied in solution and by computational methods recommended for noncovalent interactions (DFT/M05). These compounds showed interesting behavior during dilution and titration experiments monitored by (1)H NMR. 2-Acylamino-6-pyridones change their conformation at higher concentrations, forming double hydrogen-bonded dimers and trimers in which an uncommon steric effect is observed. To the best of our knowledge, this is the first example of s…
15N NMR studies of tautomerism
The literature related to 15N NMR studies of tautomerism is updated and discussed. The 15N NMR data show that the technique is applicable for both liquid and solid state (both crystalline and amorphous) materials. Modern computational methods combined with experimental NMR data can aid in the chemical shift assignments especially in case of crystalline materials (so-called NMR crystallography). This review article is divided into chapters based on the different classes of compounds and a brief description of experimental and computational NMR techniques is also included.
GIAO/DFT 13C NMR Chemical Shifts of 1,3,4-Thiadiazoles
1 H, 13 C and 15 N NMR spectra of 2-acetylamino-1,3,4-thiadiazole and its 5-substituted derivatives have been measured and assigned based on reference data, as well as homo- and heteronuclear 2 D NMR experiments. In addition, the GIAO/DFT approach at the B3LYP level of theory using the 6-311G basis set was used to calculate the 13 C NMR chemical shifts. Although this method gives reliable results for 2-arylhydrazones of 1,3-diphenylpropanetrione, 2-phenacylpyridines, (Z)-2-(2-hydroxy-2-phenylvinyl)pyridines, 4-fluoroanilines, (1Z,3Z)-1,4-di(pyridin-2-yl)buta-1,3-dienediols and their tautomeric forms, the calculated chemical shifts for the 1,3,4-thiadiazoles studied are less satisfactory. Pr…
(1Z,3Z)-3-[Quinolin-2(1H)-ylidene]-1-(quinolin-2-yl)prop-1-en-2-ol: An unexpected most stable tautomer of 1,3-bis(quinolin-2-yl)acetone
Abstract 1 H, 13 C and 15 N NMR spectra reveal that CDCl 3 solution of 1,3-bis(quinolin-2-yl)acetone contains only ( 1Z , 3Z )-3-[quinolin-2(1 H )-ylidene]-1-(quinolin-2-yl)prop-1-en-2-ol. The proton transfer takes place between two basic centers of the molecule, which means that the process is an identity reaction by character. The situation is completely different from that detected in chloroform solution of 1,3-bis(pyridin-2-yl)acetone where three different tautomers are in equilibrium with each other. Although the proton transfers in both ( 1Z , 3Z )-3-[quinolin-2(1 H )-ylidene]-1-(quinolin-2-yl)prop-1-en-2-ol and ( 1Z , 3Z )-3-hydroxy-1-[quinolin-2(1 H )-ylidene-4-quinolin-2-yl]but-3-e…
Predominance of inductive over resonance substituent effect on33S NMR chemical shifts of 4-substituted phenyl-4′-methylphenacyl sulfones
33S NMR chemical shifts have been determined for the first time for a series of 10 substituted phenacyl sulfones. Electron-withdrawing and electron-releasing substituents in 4-substituted phenyl-4′-methylphenacyl sulfones, p-MeC6H4COCH2SO2C6H4R-p, cause a ‘reverse’ substituent effect on the 33S NMR resonance. Dual-substituent parameter (DSP) analysis of δ(33S) values revealed that the inductive effect of the substituent predominates over its resonance effect. This finding shows that the 33S NMR chemical shifts are of importance in estimating the electronic properties of sulfur-containing compounds. The 13C and 17O NMR chemical shifts of the title compounds are also discussed. Copyright © 19…
Influence of Substituent and Benzoannulation on Photophysical Properties of 1-Benzoylmethyleneisoquinoline Difluoroborates
A series of 1-benzoylmethyleneisoquinoline difluoroborates were synthesized, and their photophysical properties were determined. The effect of the substituent and benzoannulation on their properties was investigated to make a comparison with recently published results focused on related quinolines. The photophysical properties of isoquinoline derivatives differ from those of quinolines, and the most pronounced differences are found for the fluorescence quantum yields. Both experimental and theoretical approaches were used to explain the observed photophysical properties.
N-methyl-1,2-dihydro-2-benzoylmethylenequinolines: configurational dissimilarity with unmethylated congeners
Abstract Twelve 1-methyl-1,2-dihydro-2-benzoylmethylenequinolines have been synthesized and their structures elucidated by 1 H, 13 C and 15 N NMR, UV–Vis and X-ray methods. The results unambiguously show that these compounds and the corresponding 1,2-dihydro-2-benzoylmethylenequinolines both in crystalline and in solution state are the Z and E isomers, respectively. Comparison of the X-ray structures reveal that ( Z )-1,2-dihydro-2-benzoyl-methylenequinolines are less twisted as compared to their 1-methyl derivatives. This difference is caused by formation of the quasi-aromatic six-membered ring stabilized by an intramolecular hydrogen bond in unmethylated congeners, prevented by N -methyla…
The influence of CH bond polarization on the self-association of 2-acylaminopyrimidines by NH/CH···O/N interactions: XRD, NMR, DFT, and AIM study
The single crystal structures of two 2-acylaminopyrimidines, where alkyl groups in acyl moiety are iso-propyl (1) and dichloromethyl (2), were solved by X-ray diffraction method. The strength of intermolecular hydrogen bonding interactions depends on the C–H bond polarization increased by exchanging two methyl groups by chlorine atoms in the adjacent substituent. The computational methods provide an additional insight into the intermolecular interactions and are utilized in explaining the differences in the observed crystal structures. The experimental and computational data together explain the differences in the formed aggregates and revealed that these simple substitutions cause crucial …
NMR Spectra of Anilines
1 Introduction 2 Ring and N-Substituted Anilines 3 Multinuclear NMR Studies of p-F-Aniline Derivatives 4 Dynamic NMR of Aniline Derivatives 5 Anilines with Other (Fused) Aromatic Rings 6 NMR Relaxation Studies of Aniline Derivatives 7 Solid State NMR Studies 8 Theoretical Calculations of Aniline NMR Parameters Keywords: aniline NMR spectra; aniline (aminobenzene, phenylamine); ring and N-substituted anilines; dual-substituent-parameter (DSP) analysis; cyclic amine structures; dynamic NMR of aniline derivatives; H NMR spectroscopy as measure of donor strengths; aniline derivative NMR relaxation studies
Predominance of 2-arylhydrazones of 1,3-diphenylpropane-1,2,3-trione over its proton-transfer products
2-Phenylhydrazones of 1,3-diphenyl-1,2,3-trione are the dominant tautomeric form detected in chloroform solution by 15N NMR chemical shifts. The substituent in the phenylhydrazone moiety does not affect this tautomeric preference. The substituent effect is transmitted effectively only to the hydrazone nitrogen and hydrogen atoms. Ab initio calculations show that the ketohydrazone tautomer is really very much favoured over its proton-transfer products in chloroform solution. The same tautomer was also detected in the crystal state by X-ray crystallography. Copyright © 2001 John Wiley & Sons, Ltd.
N-(2-Benzoyl-4-chlorophenyl)-4-chlorobenzenesulfonamide
The title compound, C19H13Cl2NO3S, is an N-arylsulfonyl derivative of 2-amino-5-chlorobenzophenone. The compound is biologically active and shows potential to be utilized as an inhibitor of CCR2 and CCR9 receptor functions. In the crystal structure, there is an intramolecular N—H...O hydrogen bond between the amide and carbonyl groups. The benzoyl and 4-chlorophenyl groups form intramolecular and intermolecular face-to-face contacts, with a dihedral angle of 10.6 (1)° between their mean planes in both cases, and centroid–centroid separations of 4.00 (1) and 4.25 (1) Å for the intra- and intermolecular interactions, respectively.
Two-photon absorption of BF2-carrying compounds: insights from theory and experiment
This communication presents a structure–property study of a few novel pyridine-based difluoroborate compounds with a N–BF2–O core, which exhibit outstanding fluorescence properties. To exploit their potential for two-photon bioimaging, relationships between the two-photon action cross section and systematic structural modifications have been investigated and unravelled.
(1Z,3Z)-1,4-Di(pyridin-2-yl)buta-1,3-diene-2,3-diol: The Planar Highly Conjugated Symmetrical Enediol with Multiple Intramolecular Hydrogen Bonds
1H, (13)C, and (15)N NMR spectral data show that in chloroform solution (1Z,3Z)-1,4-di(pyridin-2-yl)buta-1,3-diene-2,3-diol, OO, is in ca. 9:1 equilibrium with (3Z)-3-hydroxy-1,4-di(pyridin-2-yl)but-3-en-2-one, OK, while no 1,4-di(pyridin-2-yl)-2,3-butanedione, KK, was detected. The species present in the tautomeric mixture were identified by comparing their experimental chemical shifts with those known for similar compounds as well as with the theoretically calculated (GIAO-HF/DFT) values. Ab initio calculations show that OK and especially the highly conjugated OO forms are preferred in the tautomeric mixtures both in vacuo and in chloroform solution. Comparison of experimental (Arrhenius)…
Tautomeric preferences of phthalones and related compounds
Abstract Multinuclear magnetic resonance and IR spectra prove that although 2-(diacylmethyl)pyridines and 2-(diacylmethyl)quinolines are β-diketones, their proton transfer product present in chloroform solution is not ketoenol but enaminone (earlier opinions were contradictory). Quinoline derivatives are less zwitterionic by character than the respective pyridyl congeners. The β-diketone form itself may also be rarely present in the solution. X-ray data show that 2-(2(1H)-pyridinylidene)-1H-indene-1,3(2H)-dione, i.e., enaminone tautomer of 2-(pyridin-2-yl)-2H-indene-1,3-dione, is also the only form present in crystal. Ab initio calculations show that the enaminone is usually more stable tha…
Predominance of resonance over polar effects on1H,13C and15N NMR substituent chemical shifts inN-arylglycines
NMR spectral assignment of substituted salicylaldoximes by inverse pulse techniques withz-gradient selection: correlation of NMR parameters with substituent constants
6-Amino-2-(pivaloylamino)pyridinium benzoate
In the crystal structure of the title salt, C10H16N3O+·C7H5O2−, the cations and anions are linked to each other via N—H⋯O hydrogen bonds, forming infinite chains running along [010]. The crystal structure also features C—H⋯O and π–π stacking interactions, which assemble the chains into supramolecular layers parallel to (100). The π–π stacking interactions are observed between the pyridine rings of inversion-related cations with a centroid–centroid distance of 3.867 (2) Å. Financial support from the National Science Centre in Kraków (grant No. NCN204 356840) is gratefully acknowledged. Academy Professor Kari Rissanen (Academy of Finland grant Nos. 122350, 140718, 265328 and 263256) and th…
Association of N-(Pyridin-2-yl),N′-substituted Ureas with 2-Amino-1,8-naphthyridines and Benzoates: NMR and Quantum Chemical Studies of the Substituent Effect on Complexation
Association of four N-(pyridin-2-yl),N'-R(1)-ureas (R(1) = ethyl, n-butyl, phenyl, and tert-butyl) with substituted 2-amino-1,8-naphthyridines and benzoates were studied by (1)H NMR spectroscopic titrations and quantum chemical calculations. The benzoates and 2-amino-1,8-naphthyridines were selected as representatives of double and triple hydrogen bonding counterparts, respectively. The classical substituent effect on the association was studied. A prerequisite and a crucial step for the complex formation was the breaking of the intramolecular hydrogen bond in urea derivatives. The QTAIM calculation method was employed to explain the hydrogen bonding within complexes. In the case of benzoat…
Symmetric Fluoroborate and its Boron Modification: Crystal and Electronic Structures
Four boron-carrying molecules were synthesized and purified. These were found to be (a) relatively neutral with respect to the parent BF derivative and (b) functionalized by donor&ndash
Effect of π-Electron Delocalization on Tautomeric Equilibria – Benzoannulated 2-Phenacylpyridines
Most benzoannulated 2-methylpyridines react with phenyllithium and substituted alkyl benzoates to give the corresponding 2-phenacylpyridines. 3-Methylisoquinoline is transformed into 2-benzoyl-3-methyl-1-phenyl-1,2-dihydroisoquinoline under these conditions, but replacement of phenyllithium with lithium isopropylcyclohexylamide is effective for production of 3-phenacylisoquinolines. Except in the cases of some substituted 6-phenacylphenanthridines, tautomeric mixtures of benzoannulated 2-phenacylpyridines in chloroform solution always contain the ketimine forms.(Z)-2-(2-Hydroxy-2-phenylvinyl)pyridine (enolimine) forms also contribute if the pyridine ring is not benzoannulated or if such ann…
2-Acylamino- and 2,4-bis(acylamino)pyrimidines as supramolecular synthons analysed by multiple non-covalent interactions. DFT, X-ray diffraction, and NMR spectral studies
Intermolecular interactions of ten 2-acylamino and 2,4-bis(acylamino)pyrimidines (7 of which are previously unknown) have been investigated by X-ray structural, quantum chemical (DFT), and NMR spectral methods. Especially the concentration dependencies of the (1)H NMR chemical shifts and titrations with other molecules capable of multiple hydrogen bonding provided useful information regarding their association via triple or quadruple hydrogen bonding, which is controlled by the conformational preferences of 2-acylamino- and 2,4-bis(acylamino)pyrimidines. On comparison of the properties of 2-acylamino- and 2,4-bis(acylamino)pyrimidines with the corresponding pyridines, an additional nitrogen…
N-(Pyrazin-2-yl)adamantane-1-carboxamide
Molecules of the title compound, C15H19N3O, are composed of an adamantine unit and a pyrazine ring connected to each other through an amide bond. The H—N—C=O moiety is close to planar [C—N—C—O and C—N—C—C torsion angles of 4.7 (2) and −173.8 (1)°, respectively]. The N3—C5 bond has partial double-bond character [1.370 (1) Å]. The geometries of the pyrazine ring and the adamantane substituent are normal and in good agreement with closely related structures. In the crystal, molecules are connected by N—H...O hydrogen bonds, forming zigzag chains in the [001] direction and are arranged in a herringbone fashion.
Self-Organization of 2-Acylaminopyridines in the Solid State and in Solution
Aggregation of 2-acylaminopyridines and their 6-methyl derivatives in chloroform solution was studied by (1)H, (13)C, and (15)N NMR spectroscopies. The results were compared with (13)C and (15)N CPMAS NMR and IR spectral as well as with X-ray structural data. Intermolecular interactions in solution and in solid state were found to have a similar nature. Relatively strong N(amide)-H···N(pyridine) intermolecular hydrogen bonds enable dimerization to take place. Steric interactions in N-pivaloyl- and N-1-adamantylcarbonyl as well as that caused by the 6-methyl group hinder formation of the dimeric aggregates stabilized by the N(amide)-H···N(pyridine) intermolecular hydrogen bonds. In general, …
Influence of Bond Fixation in Benzo-Annulated N-Salicylideneanilines and Their ortho-C(O)X Derivatives (X = CH3, NH2, OCH3) on Tautomeric Equilibria in Solution
1H, 13C, and 15N NMR spectra show that an ortho-C(=O)X group present in the molecules of N-salicylideneanthranilamide (X = NH2), methyl N-salicylideneanthranilate (X = OCH3), N-salicylidene-o-aminoacetophenone (X = CH3), and their benzo analogues have only a minor effect on the tautomeric OH/NH-equilibrium in solution. Only two of three possible tautomers were detected. Lability of the absent form was proved by theoretical calculations. Calculated energies show that the enolimino form (OH) is less stable than the enaminone (NH) form only for dibenzo-annulated N-salicylideneanilines. The population of each species in the tautomeric mixture was found to be inversely proportional to its energy…
Structural characterization of β-2′-pyridylaminocrotonoyl-2-pyridylamide by ESI-MS, NMR, single crystal X-ray analysis and ab initio methods
Abstract In contradiction with earlier reports 1H, 13C and 15N NMR spectra show that β-2′-pyridylaminocrotonoyl-2-pyridylamide is the only form present in chloroform solution. According to the X-ray data the same tautomer exists also in the crystal state. The studied amide has a dimeric form where the monomer molecules are held together by two intermolecular hydrogen bonds. The NMR spectral data show that there is also an intramolecular hydrogen bond in each monomer subunit. The dilution experiments and variable-temperature 1H NMR runs show that β-2′-pyridylaminocrotonoyl-2-pyridylamide tends to form the dimers also in chloroform solution at higher concentrations. The ESI-TOF MS measurement…
2,2-Difluoro-3-(4-fluorophenyl)-2H-benzo[e][1,3,2]oxazaborinin-3-ium-2-uide
There is one independent molecule in the asymmetric unit of the title compound, C13H9BF3NO, which crystallizes in the non-centrosymmetric space groupCc. In the molecular structure, the BF2-carrying ring is distorted from planarity and its mean plane makes a dihedral angle of 42.3 (1)° with the 4-fluorophenyl ring. F atoms are involved in all of the short intermolecular contacts of the crystal structure, which link molecules to form chains along [001] and [010].
Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case
The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance of conformational equilibrium and its influence on association in solution. Moreover, the associates were observed by mass spectrometry. The DFT-based computations for complexes and single bond rotational barr…
Long-range substituent and temperature effect on prototropic tautomerism in 2-(acylmethyl)quinolines
Tautomeric equilibria between 2-(cinnamoylmethyl)quinoline, (Z)-1,2-dihydro-2-(cinnamoylmethylene)quinoline and (Z)-4-phenyl-1-(2-quinolyl)-1,3-butadien-2-ol were studied by 1H, 13C and 15N NMR methods. The —CHCH— fragment conjugated with phenyl and a strong electron donor p-(1-pyrrolidine) substituent were found to favour the enolimine tautomer. This undergoes fast exchange (on the NMR time-scale) with the enaminone form. The amount of the latter tautomer was found to increase at low temperatures. Copyright © 2001 John Wiley & Sons, Ltd.
Identity Double-Proton Transfer in (3Z)-3-Hydroxy-1,4-di(quinolin-2-yl)but-3-en-2-one
Although there is a very fast (on the NMR timescale) double-proton transfer in (1Z,3Z)-3-hydroxy-4-quinolin-2-yl-1-quinolin-2(1H)-ylidenbut-3-en-2-one (the product of the condensation of ethyl oxalate with 2-lithiomethylquinoline), it is the only species present in chloroform solution. Comparison of the product of condensation of ethyl oxalate with 2-lithiomethyl derivatives of pyridine (recent studies) and quinoline (present studies) shows that benzoannulation considerably affects the tautomeric equilibrium. The observed changes are not only quantitative but also qualitative. Moreover, contrary to the proton transfer in the pyridine tautomers, this process is fast in the quinoline tautomer…
(Z)-Ethyl 2-oxo-3-(1,2-dihydroquinolin-2-ylidene)propanoate
Both independent molecules in the asymmetric unit of the tautomeric title compound, C14H13NO3, a synthetic product obtained from 2-lithiomethylquinoline and diethyl oxalate, crystallize in the enaminone form with a Z configuration around the double bond. Intramolecular N—H...O hydrogen bonds occur, generating an S(6) graph-set motif. In the crystal, weak intermolecular C—H...O and π–π stacking interactions [centroid–centroid distances = 3.7020 (14)–3.7429 (13)Å] define a three-dimensional supramolecular network.
NMR and quantum chemical studies on association of 2,6-bis(acylamino)pyridines with selected imides and 2,2′-dipyridylamine
Association constants of 2,6-bis(alkylcarbonylamino)pyridines (alkyl = methyl or ethyl) and their perfluoroalkyl analogues with succin- and maleimide as well as with 2,2′-dipyridylamine (complementary DAD and ADA hydrogen bonding motifs are responsible for formation of the associates) have been determined by NMR titrations and quantum chemical calculations. Interactions of 2,6-bis(alkylcarbonylamino)pyridines with imides differ by character from these of perfluoroalkyl analogues. Such large difference was not observed for the 2,2′-dipyridylamine associates. Since fluorine atoms cause carbonylamino groups to be stronger hydrogen bond donors, perfluorinated species of this type were found to …
Substituent Effect in 2-Benzoylmethylenequinoline Difluoroborates Exhibiting Through-Space Couplings. Multinuclear Magnetic Resonance, X-ray Diffraction, and Computational Study
The series of nine 2-benzoylmethylenequinoline difluoroborates have been synthesized and characterized by multinuclear magnetic resonance, X-ray diffraction (XRD), and computational methods. The through-space spin-spin couplings between (19)F and (1)H/(13)C nuclei have been observed in solution. The NMR chemical shifts have been correlated to the Hammett substituent constants. The crystal structures of six compounds have been solved by XRD. For two derivatives the X-ray wave function refinement was performed to evaluate the character of bonds in the NBF(2)O moiety by topological and integrated bond descriptors.
Conformational and Tautomeric Control by Supramolecular Approach in Ureido-N-iso-propyl,N’-4-(3-pyridin-2-one)pyrimidine
Ureido-N-iso-propyl,N&rsquo
Association of 2-acylaminopyridines and benzoic acids. Steric and electronic substituent effect studied by XRD, solution and solid-state NMR and calculations
Abstract Eight single crystal X-ray structures, solid-state NMR spectroscopic, and theoretical studies utilizing QTAIM methodology were used to characterize the 2-acyl (alkyl in acyl = methyl, ethyl, t-butyl, and 1-adamantyl) amino-6-R-pyridine/4-R′-benzoic acid (R,R′ = H or Me) cocrystals. As expected among alkyl groups 1-adamantyl due to its bulkiness has the most significant effect on the relative positions of molecules in cocrystals. In addition, the subtle electronic and steric effects by the methyl substituents were observed. The theoretical calculations with full geometry optimizations are in agreement with the experimental findings (geometry, energy of hydrogen bonds). Based on the …
N,N′-Bis(pyridin-2-yl)octanediamide
The complete molecule of the title compound, C18H22N4O2, is generated by crystallographic inversion symmetry. In the crystal, N—H...N hydrogen bonds connect the molecules into [010] chains, which featureR22(8) loops. The packing is consolidated by C—H...O interactions.
N-[2-(2,2-Dimethylpropanamido)pyrimidin-4-yl]-2,2-dimethylpropanamide n-hexane 0.25-solvate hemihydrate
The asymmetric unit of the title compound, C14H22N4O2·0.25C6H14·0.5H2O, contains two independent molecules of 2,4-bis(pivaloylamino)pyrimidine (M) with similar conformations, one water molecule and one-halfn-hexane solvent molecule situated on an inversion center. In one independentMmolecule, one of the twotert-butyl groups is rotationally disordered between two orientations in a 3:2 ratio. Then-hexane solvent molecule is disordered between two conformations in the same ratio. The water molecule bridges two independentMmoleculesviaO—H...O, N—H...O and O—H...N hydrogen bonds into a 2M·H2O unit, and these units are further linked by N—H...N hydrogen bonds into chains running in the [010] dire…
GIAO/DFT calculated chemical shifts of tautomeric species. 2-Phenacylpyridines and (Z)-2-(2-hydroxy-2-phenylvinyl)pyridines
1H, 13C and 15N NMR chemical shifts for 28 substituted 2-phenacylpyridines (ketimine forms) and their enolimine tautomers, (Z)-2-(2-hydroxy-2-phenylvinyl)pyridines, were calculated via the GIAO/DFT approach. Among four tested methods at the B3LYP level of theory, the 6–311G, 6–311++G and 6–311G** basis sets gave acceptable result for 13C NMR chemical shifts whereas the 6–311++G** basis set was the minimum needed for reproduction of 15N NMR chemical shifts. Satisfactory reproduction of 13C and 15N NMR chemical shifts for different tautomers revealed that intramolecular hydrogen bonding could be modeled reliably by these calculations when the geometry optimizations were done with the HF/3–21G…
Substituent and temperature controlled tautomerism of 2-phenacylpyridine: the hydrogen bond as a configurational lock of (Z )-2-(2-hydroxy-2-phenylvinyl)pyridine
2-Phenacylpyridines substituted in the benzene ring are in equilibrium with (Z)-2-(2-hydroxy-2-phenylvinyl)pyridines when dissolved in chloroform. The substituent affects significantly the tautomeric equilibrium [the amount of the enolimine form stabilized by the intramolecular hydrogen bond is 1 and 92% for R = p-N(CH2)4 and p-NO2, respectively]. The negative logarithm of the tautomeric equilibrium constant, KT, is linearly dependent on the Hammett σ substituent constants. The dependence of KTvs. temperature is exponential in character: the more electron-withdrawing is the substituent, the more distinct is the influence of temperature. Unexpectedly, the tautomer present in the crystalline …
Complex tauto- and rotamerism of 2-(R-phenyl)-1,2,3,4-tetrahydroquinazolines
Detailed NMR spectral analysis of CDCl3 solutions of 2-(R-phenyl)-1,2,3,4-tetrahydroquinazolines reveals three or four tautomeric forms. Apart from 2-[(benzylideneamino)methyl]aniline, the other chain tautomeric forms are present only in minor quantities. In general, electron-donating substituents increase the contribution of all chain forms. Lowering the temperature of the CDCl3 solution of 2-(R-phenyl)-1,2,3,4-tetrahydroquinazolines decreases the content of the 2-[(benzylideneamino)methyl]aniline form. At the same time, the amount of the ring form increases. Opening of the tetrahydropyrimidine ring in 2-(R-phenyl)-1,2,3,4-tetrahydroquinazolines was found to be an endothermic process espec…
2-Methyl-N-(pyrazin-2-yl)propanamide–1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1)
In the title compound, C8H11N3O·0.5C6F4I2, molecules ofiPr-substituted pyrazine are co-crystallized with 1,4-diiodo-2,3,5,6-tetrafluorobenzene. The complete molecule of 1,4-diiodo-2,3,5,6-tetrafluorobenzene is generated by an inversion centre at the middle of the aromatic ring. Both molecules have normal geometry and theiPr acylamine group is disordered over two sets of sites with an occupancy ratio of 0.51:0.49. In the crystal, the components are linked by I...N halogen bonds [2.830 (2) Å] and C—H...F interactions are observed.
Tuning the hydrogen bonding strength in 2,6-bis(cycloalkylcarbonylamino)pyridine assemblies by variable flexibility. Association constants measured by hydrogen bonded vs. non-hydrogen bonded protons
International audience; The association of 2,6-bis(cycloalkylcarbonyloamino)pyridines with rigid and non-rigid counterparts was studied in chloroform solution by 1H NMR and computational methods. The angles within the cycloalkyl ring and rotation of these substituents determine the strength of the association via triple hydrogen-bonding. The dimerization and methyl-methyl repulsion have been addressed as mechanisms restricting heterocomplexation of diacetamide. The association constants obtained by the shift changes of hydrogen-bonded protons are in agreement with those of methine protons. This "dual shift" method was proposed as an additional verification of association constants obtained …
13C-NMR Based Evaluation of the Electronic and Steric Interactions in Aromatic Amines
Abstract: Chemical shifts of the para carbon atoms, δ(13C-4), in a series of aromatic amines were used to calculate the Ãp, ÃR and ÃOR substituent constants for different amino groups. 1-Pyrrolidino, N,N-di-n-butylamino and N,N-diethylamino groups were found to be the most strong electron-donors. ortho-Substitution decreases the donor properties of the amino group. The amino groups in 2,6-di-i-propylaniline and N,N-2,6-tetramethylaniline have very weak electron-donor properties. The nitrogen atom in benzoquinuclidine and N,N-dimethyl-2,6-di-i-propylaniline have an electron-acceptor character. The calculated substituent constants of the amino groups studied are consistent with the s…
Substituent effects on the photophysical properties of fluorescent 2-benzoylmethylenequinoline difluoroboranes: A combined experimental and quantum chemical study
Abstract In this study, we demonstrate a successful synergy between theory and experiment and report on the photophysical properties of a recently synthesized series of substituted 2-benzoylmethylenequinoline difluoroboranes with a view towards the effect of substitution on their properties. In general difluoroboranes are known to have a bright fluorescence but for some analogs the properties are not fully understood. Quantum chemistry methods have been applied in order to explain a complex structure of the absorption and emission spectra and to gain an insight into the charge redistribution upon the excitation of the investigated molecules. We demonstrate that the spectra of this important…
CCDC 901286: Experimental Crystal Structure Determination
Related Article: Anna Zakrzewska, Erkki Kolehmainen, Arto Valkonen, Esa Haapaniemi, Kari Rissanen, Lilianna Chęcińska, and Borys Ośmiałowski|2013|J.Phys.Chem.A|117|252|doi:10.1021/jp311072q
CCDC 957915: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Erkki Kolehmainen, Krzysztof Ejsmont, Satu Ikonen, Arto Valkonen, Kari Rissanen, Nonappa|2013|J.Mol.Struct.|1054|157|doi:10.1016/j.molstruc.2013.09.047
CCDC 1014209: Experimental Crystal Structure Determination
Related Article: Anna Zakrzewska, Erkki Kolehmainen, Arto Valkonen, Esa Haapaniemi, Kari Rissanen, Lilianna Chęcińska, and Borys Ośmiałowski|2013|J.Phys.Chem.A|117|252|doi:10.1021/jp311072q
CCDC 1572932: Experimental Crystal Structure Determination
Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662
CCDC 957918: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Erkki Kolehmainen, Krzysztof Ejsmont, Satu Ikonen, Arto Valkonen, Kari Rissanen, Nonappa|2013|J.Mol.Struct.|1054|157|doi:10.1016/j.molstruc.2013.09.047
CCDC 957920: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Erkki Kolehmainen, Krzysztof Ejsmont, Satu Ikonen, Arto Valkonen, Kari Rissanen, Nonappa|2013|J.Mol.Struct.|1054|157|doi:10.1016/j.molstruc.2013.09.047
CCDC 841777: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski , Erkki Kolehmainen , Satu Ikonen , Arto Valkonen , Adam Kwiatkowski , Izabela Grela , and Esa Haapaniemi|2012|J.Org.Chem.|77|9609|doi:10.1021/jo301643z
CCDC 841780: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski , Erkki Kolehmainen , Satu Ikonen , Arto Valkonen , Adam Kwiatkowski , Izabela Grela , and Esa Haapaniemi|2012|J.Org.Chem.|77|9609|doi:10.1021/jo301643z
CCDC 1520868: Experimental Crystal Structure Determination
Related Article: Joanna Bednarska, Robert Zaleśny, Małgorzata Wielgus, Beata Jędrzejewska, Rakesh Puttreddy, Kari Rissanen, Wojciech Bartkowiak, Hans Ågren, Borys Ośmiałowski|2017|Phys.Chem.Chem.Phys.(PCCP)|19|5705|doi:10.1039/C7CP00063D
CCDC 957919: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Erkki Kolehmainen, Krzysztof Ejsmont, Satu Ikonen, Arto Valkonen, Kari Rissanen, Nonappa|2013|J.Mol.Struct.|1054|157|doi:10.1016/j.molstruc.2013.09.047
CCDC 1572931: Experimental Crystal Structure Determination
Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662
CCDC 1014211: Experimental Crystal Structure Determination
Related Article: Anna Zakrzewska, Erkki Kolehmainen, Arto Valkonen, Esa Haapaniemi, Kari Rissanen, Lilianna Chęcińska, and Borys Ośmiałowski|2013|J.Phys.Chem.A|117|252|doi:10.1021/jp311072q
CCDC 1422861: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Karina Mroczyńska, Erkki Kolehmainen, Magdalena Kowalska, Arto Valkonen, Marek Pietrzak, and Kari Rissanen|2013|J.Org.Chem.|78|7582|doi:10.1021/jo4011393
CCDC 957917: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Erkki Kolehmainen, Krzysztof Ejsmont, Satu Ikonen, Arto Valkonen, Kari Rissanen, Nonappa|2013|J.Mol.Struct.|1054|157|doi:10.1016/j.molstruc.2013.09.047
CCDC 957914: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Erkki Kolehmainen, Krzysztof Ejsmont, Satu Ikonen, Arto Valkonen, Kari Rissanen, Nonappa|2013|J.Mol.Struct.|1054|157|doi:10.1016/j.molstruc.2013.09.047
CCDC 1422862: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Karina Mroczyńska, Erkki Kolehmainen, Magdalena Kowalska, Arto Valkonen, Marek Pietrzak, and Kari Rissanen|2013|J.Org.Chem.|78|7582|doi:10.1021/jo4011393
CCDC 901285: Experimental Crystal Structure Determination
Related Article: Anna Zakrzewska, Erkki Kolehmainen, Arto Valkonen, Esa Haapaniemi, Kari Rissanen, Lilianna Chęcińska, and Borys Ośmiałowski|2013|J.Phys.Chem.A|117|252|doi:10.1021/jp311072q
CCDC 1572930: Experimental Crystal Structure Determination
Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662
CCDC 1014210: Experimental Crystal Structure Determination
Related Article: Anna Zakrzewska, Erkki Kolehmainen, Arto Valkonen, Esa Haapaniemi, Kari Rissanen, Lilianna Chęcińska, and Borys Ośmiałowski|2013|J.Phys.Chem.A|117|252|doi:10.1021/jp311072q
CCDC 1572933: Experimental Crystal Structure Determination
Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662
CCDC 1520867: Experimental Crystal Structure Determination
Related Article: Joanna Bednarska, Robert Zaleśny, Małgorzata Wielgus, Beata Jędrzejewska, Rakesh Puttreddy, Kari Rissanen, Wojciech Bartkowiak, Hans Ågren, Borys Ośmiałowski|2017|Phys.Chem.Chem.Phys.(PCCP)|19|5705|doi:10.1039/C7CP00063D
CCDC 1422860: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Karina Mroczyńska, Erkki Kolehmainen, Magdalena Kowalska, Arto Valkonen, Marek Pietrzak, and Kari Rissanen|2013|J.Org.Chem.|78|7582|doi:10.1021/jo4011393
CCDC 957921: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Erkki Kolehmainen, Krzysztof Ejsmont, Satu Ikonen, Arto Valkonen, Kari Rissanen, Nonappa|2013|J.Mol.Struct.|1054|157|doi:10.1016/j.molstruc.2013.09.047
CCDC 957916: Experimental Crystal Structure Determination
Related Article: Borys Ośmiałowski, Erkki Kolehmainen, Krzysztof Ejsmont, Satu Ikonen, Arto Valkonen, Kari Rissanen, Nonappa|2013|J.Mol.Struct.|1054|157|doi:10.1016/j.molstruc.2013.09.047
CCDC 1014212: Experimental Crystal Structure Determination
Related Article: Anna Zakrzewska, Erkki Kolehmainen, Arto Valkonen, Esa Haapaniemi, Kari Rissanen, Lilianna Chęcińska, and Borys Ośmiałowski|2013|J.Phys.Chem.A|117|252|doi:10.1021/jp311072q