0000000001301735
AUTHOR
Matthew M. Morgan
Zirconocene-Based Methods for the Preparation of BN-Indenes : Application to the Synthesis of 1,5-Dibora-4a,8a-diaza-1,2,3,5,6,7-hexaaryl-4,8-dimethyl-s-indacenes
A method for the preparation of 3-bora-9aza-indene heterocycles based on zirconocene mediated functionalization of the ortho-CH bonds of pyridines has been developed and used to make two such compounds. Unlike other methods, the boron center in these heterocycles remains functionalized with a chloride ligand and so the compounds can be further elaborated through halide abstraction and reduction. The utility of the method was further demonstrated by applying it towards the preparation of 1,5- dibora-4a,8a-diaza BN analogues of the intriguing hydrocarbon s-indacene starting from 2,5-dimethylpyrazine. Gram quantities of one such compound was prepared and fully characterized, and both experimen…
Divergent reactivity of nucleophilic 1-bora-7a-azaindenide anions
The reactions of 1-bora-7a-azaindenide anions, prepared in moderate to excellent yields by reduction of the appropriate 1-bora-7a-azaindenyl chlorides with KC8 in THF, with alkyl halides and carbon dioxide were studied. With alkyl halides (CH2Cl2, CH3I and BrCH(D)CH(D)tBu), the anions behave as boron anions, alkylating the boron centre via a classic SN2 mechanism. This was established with DFT methods and via experiments utilizing the neo-hexyl stereoprobe BrCH(D)CH(D)tBu. These reactions were in part driven by a re-aromatization of the six membered pyridyl ring upon formation of the product. Conversely, in the reaction of the 1-bora-7a-azaindenide anions with CO2, a novel carboxylation of …
Boron–nitrogen substituted dihydroindeno[1,2-b]fluorene derivatives as acceptors in organic solar cells
The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron–nitrogen doped dihydroindeno[1,2-b]fluorene which can be synthesized using standard Schlenk techniques and worked up and handled readily under atmospheric conditions. Through transmetallation via diarylzinc reagents a series of derivatives were synthesized which show broad visible to near-IR light absorption profiles that highlight the versatility of this BN substituted core for use in optoelectronic devices. The synthesis is efficient, scalable and allows for tuning through changes in substituents on the planar heterocyclic core and at boron. Exploratory evaluation in organic solar cell devices as non-ful…
CCDC 1575610: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1584568: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, J. Mikko Rautiainen, Warren E. Piers, Heikki M. Tuononen, Chris Gendy|2018|Dalton Trans.|47|734|doi:10.1039/C7DT04350C
CCDC 1575611: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1575616: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1575614: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1584567: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, J. Mikko Rautiainen, Warren E. Piers, Heikki M. Tuononen, Chris Gendy|2018|Dalton Trans.|47|734|doi:10.1039/C7DT04350C
CCDC 1937170: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Maryam Nazari, Thomas Pickl, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Gregory C. Welch, Benjamin S. Gelfand|2019|Chem.Commun.|55|11095|doi:10.1039/C9CC05103A
CCDC 1575615: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1575617: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1575612: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1575609: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1937169: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Maryam Nazari, Thomas Pickl, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Gregory C. Welch, Benjamin S. Gelfand|2019|Chem.Commun.|55|11095|doi:10.1039/C9CC05103A
CCDC 1575613: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051